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Common building block: generating sequences with Transformers



Overview

In this tutorial:

1. What is a transformer?
2. Examples of using transformers on mathematical data

3. Interactive notebook sessions
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Overview

In this tutorial:

1. What is a transformer?
2. Examples of using transformers on mathematical data

3. Interactive notebook sessions

Notebooks: github.com/wellecks/transformers4math-simons

Thank you to Adam Zsolt Wagner for help in putting together this tutorial.
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Introduction to Transformers

HENFETT

|

- Transformers are a neural E o)
network architecture.

- Key part of large language
models (LLMs) and generative Transformer

Al'in many domains.

- Maps an input sequence to
an output sequence.

| like mathematics



Introduction to Transformers

(7 S\
Output
Transformers consist of multiple
“layers” stacked together. Layer N
Key components: Layer 2
- Token embeddings
] ng ) Layer 1
- Self-attention mechanism
\ Input )




Representing inputs: tokenization

- Tokenization: represent an mD| [ || i |E| e || ||m|@

input as a sequence of
discrete tokens

- Example: a sentence as a | like mathematics

sequence of characters
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Representing inputs: tokenization

- Tokenization: represent an @mm@mm@m@

input as a sequence of
discrete tokens 3
- Example: a sentence as a
sequence of characters
- Example: a graph as an
adjacency matrix string 0

Takeaway: transformers are general purpose! Just find a way to treat
your input as a sequence of tokens and the transformer will accept
it.



Representing inputs: token embeddings

- - . L
- Each token is associated with EeiE

!
a vector called a token - s = -
embedding. i i E E E

- The token embeddings are Input
passed to main layers of the

!
transformer. O] 0l x]e] Jm]a]-..



Main layers: self-attention

. A ) The The
The attention mechanism is the animal
fundamental building block of didn’t didn’t
transformer layers. cross cross
the the
- Lets the model focus on different parts street street
of the input sequence when making because because
predictions. it
. . . . was was
- Attention assigns different weights to too oo
each input element. tired tired

- These weights determine how much
each element contributes to the output. Attention



Why do we need attention?

Consider the bigram model:

- Predicts the next letter based only ['mmin®,
on the previous letter. :rjn‘i‘y"i"
- Example: when trained on a list of :g;{gi“i?“i”arsar°“zaiy"
names, it produces names that lack ‘caiviron',
'mamizanasshon',
coherence and context. e,
. . ‘cka',
- To Improve th|5, we could take the 'azemanartlougialecyamaitilee']
average of all previous token

Names generated by the
bigram model (bigrams.ipynb)

embeddings.

- But taking a simple average may not
capture context well.



Why do we need attention?

Consider the bigram model:

- Predicts the next letter based only ['mmin®,
on the previous letter. :rjn‘i‘y"i"
- Example: when trained on a list of :g;{gi“i?“i”arsar°“zaiy"
names, it produces names that lack ‘caiviron',
'mamizanasshon',
coherence and context. e,
. . ‘cka',
- To Improve th|5, we could take the 'azemanartlougialecyamaitilee']
average of all previous token

Names generated by the
bigram model (bigrams.ipynb)

embeddings.

- But taking a simple average may not
capture context well.

Takeaway: attention mechanisms learn to effectively use context.



Self-Attention: A Closer Look

- In self-attention, each token in the input sequence emits a
query vector and a key vector.
- Think of the query as asking, "What am | looking for?” It represents
the token’s context of interest.
- The key is like asking, "What do | contain?” It represents the
token’s information.
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Self-Attention: A Closer Look

- In self-attention, each token in the input sequence emits a
query vector and a key vector.
- Think of the query as asking, "What am | looking for?” It represents
the token's context of interest.
- The key is like asking, "What do | contain?” It represents the
token’s information.
- To compute affinities between keys and queries, we take dot
products:

Affinity(Q;, Kj) = Q; - K;

- High alignment between a key and query results in a larger
weight, indicating the importance of that token for the query.



Self-Attention: Computing the Context Vector

- After computing affinities between queries and keys, we apply a
softmax function to obtain normalized weights:

exp(Q; - K))

Attention(Q;, Kj) = S exp(Q; - K)
j I



Self-Attention: Computing the Context Vector

- After computing affinities between queries and keys, we apply a

softmax function to obtain normalized weights:

. exp(Q; - K))

Attention(Q;, K) = —=————37
( i J) ZI' exp(Q,‘ . K/.)

- These normalized weights, often called attention scores,
represent how much each key contributes to the query.
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Self-Attention: Computing the Context Vector

- After computing affinities between queries and keys, we apply a

softmax function to obtain normalized weights:

, exp(Q; - Kj)

Attention(Q;,K)) = =————~
(@5 = 5 expl@- )

- These normalized weights, often called attention scores,
represent how much each key contributes to the query.

- We then use these attention scores to take a weighted sum of
the values associated with the keys:

Context Vector(Q ZAttenUon(Q,, K;) -V

j

- The resulting context vector for each query captures relevant
information from the entire sequence.



Queries, Keys, and Values

- Recap: In self-attention, we have three vectors at each token:

1. Query: Think of it as saying, “Here is what I'm interested in." It
represents the token’s context of interest.

2. Key: Consider it as answering, “Here is what | have” It represents
the token'’s stored information.

3. Value: Imagine it as conveying, “If you find me interesting, here is
what | will communicate to you.” It's the token’s contribution to
the output.

- Together, these networks enable self-attention to dynamically
weigh and combine information from across the sequence.

1



Let's do something useful!

We still need to train the model so that it

learns vector representations that are
useful for a task. Example:

- Language modeling: make the
vector at each position useful for
predicting the next token

[t]
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Let's do something useful!

We still need to train the model so that it
learns vector representations that are
useful for a task. Example:

- Language modeling: make the
vector at each position useful for
predicting the next token

- Introduce an output layer that
maps the vector to a probability for
each possible next-token

- Minimize a loss that makes the
next-token that appears in the
training sequence more probable

[t]

t
Output
4

HH?HH

Layers
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Input
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Language modeling



Let's do something useful - language modeling

To train the transformer language model we supply a training set of
sequences. The model is trained to predict each next token, i.e,
increase the token’s probability given the previous tokens.

['miko",
'tenuun’',
'issachar’',
'katana’',
'amelie',
'doha’,
'burk',
'daran',
'ryelan’,
‘avelino']

Examples from the training set (transformer.ipynb)



Let's do something useful - language modeling

After training, we can generate new sequences with the language
model. We generate one token at a time according to the model’s
next-token probabilities.

maryna
inattin
jairem
naisel
pesen
payceo
zachia
vilery
poana

Transformer-generated names that don’t appear in the training set

14



Let's do something useful - language modeling

After training, we can generate new sequences with the language
model. We generate one token at a time according to the model’s
next-token probabilities.

maryna
inattin
jairem
naisel
pesen
payceo
zachia
vilery
poana

Transformer-generated names that don’t appear in the training set

Enough names! Let's generate mathematical things

14



Some math-related applications

- Toy examples
- Computations

- Discovery



Toy examples: let’s build some intuition!

Dataset: random {0,1,2} strings of random length between 10 and 15,
that also contain a unique “3” in a random position.

+ 11020103221
+ 20232212010
- 0112123211221120

We train a transformer on this for a long time. What will the
attention heatmap look like?

16



Heatmap: exactly one 3

Attention Heatmap: 0112123211221120

Token Index

0.0

[} 2 4 6 8 10 12 14
Token Index 17



Toy examples: let’s build some intuition!

Dataset: each sequence is:
- aname

- the count of each unique character that occurs in the name

anna—a2n2
simons—s2ilmlolnl



Toy examples: let’s build some intuition!

- Let's generate 1000 sequences with the trained model:

- 96.6% correct
- 65.5% novel (not in training set)

['joangelo$jlo2alnlglelll’,
'salen$slalllelnl’,
'larbella$l3a2rilblel’,
'jilianna$jli2lla2n2’,
'jeliani$jlellli2alnl’,
‘elysen$e21lylsinl’,
'laniish$11lalnli2s1ihl’,
'narvio$nlalrlvlilol’,
'andersi$alnldlelrlslil’,
‘aldio$allldlilol’']

Example correct and novel generations

19



Toy examples: let’s build some intuition!

- Let's generate 1000 sequences with the trained model:

- 96.6% correct
- 65.5% novel (not in training set)

['joangelo$jlo2alnlglelll’,
'salen$slalllelnl’,
'larbella$l3a2rilblel’,
'jilianna$jli2lla2n2’,
'jeliani$jlellli2alnl’,
'elysen$e211lylsinl’,
'laniish$11lalnli2s1ihl’,
'narvio$nlalrlvlilol’,
'andersi$alnldlelrlslil’,
‘aldio$allldlilol’']

Example correct and novel generations

Takeaway: a bit noisy (96.6%), but it learns the pattern pretty well
and is not just memorizing the training data!

19



Toy examples: let’s build some intuition!

Accuracy on held out names: 97.3%

Most failure cases:
- Characters with count 3 or 4
- evelee—e3vill

- Model forgets to generate a character’s count
- stockton— s1t202c1kl

20



Toy examples: let’s build some intuition!

Accuracy on held out names: 97.3%

Adversarial cases:

- aaa — abibi1a2

- s3an — alalalalalalalal

21



Some math-related applications

- Toy examples
- Computations

- Discovery

22



Some math-related applications

- Toy examples
- Computations
- Discovery

23



Simple computations: addition

Add two 4-digit integers:

+ 2871+9281=12152
-+ 1000+1000=2000

- Around 40 million unique unordered pairs.

24



Simple computations: addition

Add two 4-digit integers:

+ 2871+9281=12152
-+ 1000+1000=2000

- Around 40 million unique unordered pairs.
Plan:

- Train a transformer language model on a dataset of 5 million
addition problems.

- Evaluate it on problems that aren’t in the training set.

24



Simple computations: addition

-+ Test accuracy: 100.0%

- It can generate full problems that aren’t in the training set:

2036+2045=4081
2478+2311=4789
4024+4833=8857
8577+1026=9603

3619+3435=7054
5685+8368=14053
3106+6791=9897

New addition problems

25
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Symbolic integration [Lample & Charton 2019]

Lample and Charton trained a transformer to take in an equation as a
sequence of tokens, and output its integral as a sequence of tokens.

Equation | Solution

3 _ 2
/ 162° — 422° + 2z y=sin71(4a:4714a:3+z2)

Y = (C16a® + 11227 — 20425 + 2825 — 24 + 1)1/2
3zy cos(x) — v/9x2sin(x)? + 1y’ + 3ysin(z) =0 Y = cexp (sinh_l(?)z sin(z)))
c1 + 3z + 3log (z)
4xtyy” —8x'y? —8ayy — 31y —8a%y® — 62’y — 32’y —9zy' —3y =0 | ¥ = Y I S (ca + 4z)

Problems that the transformer was able to solve, on which Mathematica and
Matlab were not able to find a solution.

26



Symbolic integration [Lample & Charton 2019]

Lample and Charton trained a transformer to take in an equation as a
sequence of tokens, and output its integral as a sequence of tokens.

Equation | Solution

. 162° — 4222 + 22
T (—1628 + 11227 — 20426 + 2825 — 4 + 1)1/2

Y y =sin"'(4z” — 142® + ?)

3zy cos(x) — v/9x2sin(x)? + 1y’ + 3ysin(z) =0 Y = cexp (sinh_l(?)z sin(z)))
c1 + 3z + 3log (z)
4xtyy” —8x'y? —8ayy — 31y —8a%y® — 62’y — 32’y —9zy' —3y =0 | ¥ = Y I S (ca + 4z)

Problems that the transformer was able to solve, on which Mathematica and
Matlab were not able to find a solution.

Each integral can be verified by taking its derivative. As a result, we
can generate multiple candidates and discard the incorrect ones.

26



Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other prediction problems:

27



Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other prediction problems:

- Solutions to 1st and 2nd-order ODES [Lample & Charton 2019]

Input:
162x log(X)y’ 4 2)° log(x)? — 81y log(x) + 81y = 0
Generated solutions:

WX\ mwm

V€ + 2X
9

I
c£oelx) 2 ® 49 log (x)

1
9\&\/C log (x) + 2xlog (x) + log (X)

27



Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other computations:
- Solutions to 1st and 2nd-order ODES [Lample & Charton 2019]
- Properties of differential systems (e.g., stability) [Charton et al 2021]
- Global Lyapunov functions [Alfarano et al 2024]

- Frobenius traces from elliptic curves [Babei et al 2025]

28



Beyond integration

What problems are suitable? Some common themes:
- Verifiable. E.g. we can often verify that [ f = g by taking its
derivative with a computer algebra system.

- Data generator. A lot of ingenuity goes into creating a data
generator, e.g. synthesizing random functions and pairing a
function with its derivative

29



Some math-related applications

- Toy examples
- Computations
- Discovery

30



Generating constructions (based on [Charton et al 2024 [1]]

How many edges can an n-vertex graph have, if no three edges
form a triangle?

° Y

Example triangle-free graphs for n = 3 to 6. From [1].

31



Generating constructions

Plan: generate many graphs that satisfy this triangle-free property

32



Generating constructions

Plan: generate many graphs that satisfy this triangle-free property

- Naive search: keep randomly deleting an edge that is in the
maximum number of triangles. Then keep adding random edges
that don't introduce a triangle.

score(G) = #edges(G) (1)

32



Generating constructions

Distribution of Graph Scores

- [ Naive search
0.10 n
0.08 1 [
g 0.06 B
e
5]
3
g
c
0.04
0.00 y v T T
60 70 80 90 100
Number of Edges

Score distribution for 100,000 graphs found by the naive search

33



Generating constructions

Let's represent each adjacency matrix as a string, and a train a transformer!

34



Generating constructions

Distribution of Graph Scores

= [0 Naive search
0.10 = [ Transformer
0.08 RE
g 0.06 =
2
] -
g
i
0.04
. ,/_El‘ﬁ H—Pﬁ_\::n—vl
0.00 -
50 60 70 80 90 100

Number of Edges

The transformer learns to generate graphs that have a similar score
distribution.

35



Generating constructions

Distribution of Graph Scores

1 Naive search
0.10 I mmm Transformer (top 10\%)
0.08 M
oy
2 0.06
5
2
g
£
0.04
0.02
0.00 T
60 70 80 %0 100

Number of Edges

Instead, train the transformer on the top 10% of graphs from the local search.

36



Generating constructions

Distribution of Graph Scores

[0 Naive search
010 [ Transformer (top 10\%)
B Naive search round II

0.08

Frequency
o
>
&

0.04

80
Number of Edges

Running local search from this transformer’s generated constructions results
in several high-scoring graphs (score 100)

37
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The score 100 graphs are isomorphic, and are bipartite graphs
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PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

PatternBoost by Charton-Ellenberg-Wagner-Williamson generalizes
this idea. It alternates between:

- Local phase: classical search algorithm produces constructions

- Global phase: train a Transformer on the best constructions,
then generate candidates that are passed to the next local phase

They apply it to several non-trivial problems.

39



PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

Question (Brualdi-Cao)

How large can the permanent of a binary n x n matrix be, that
does not contain the pattern 312?

Example construction for n = 25 with permanent 5,101,230. The initial local

search gets 641,000. 0



PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

Conjecture (Graham & Harary 1992)

The maximum number of edges one can delete from the d-dimensional
hypercube without increasing its diameter is 2% + (|, ) — 2.

@@@@@@@@@@@@@@@

,

W e @‘@;@”e
V2
Counterexample discovered that has d = 6 with 81 < 2° + (§) — 2 = 82 edges.

41



1. What is a transformer?

2. Examples of using transformers on mathematical data

- Toy examples
- Computations
- Discovery

3. Interactive notebook sessions

42



Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.

wellecks transformers4math-simons

© lIssues I Pullrequests (® Actions [ Projects [ Wiki (@ Security |~ Insights 3 Settings

& transformersdamath-simons  Public

® Unwatch 1~

¥ 1Branch © 0 Tags 3 Add file ~ <> Code ~

&€ wellecks Merg ch 'main’ of github.cor

9. 7hoursago 0 9 Commits
I 1_bigram
B 2_transformer

B8 3_addition p

B 4_graphs part4

https://github.com/wellecks/transformers4math-simons

43
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Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.”

Thttps://github.com/wellecks/transformers4math-simons

I
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Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.”

- Transformers and language models: see concretely how
transformers and language models work.
- bigrams.ipynb: the simplest possible language model.
- transformers.ipynb: a transformer implementation and
detailed code for training it as a language model.

Thttps://github.com/wellecks/transformers4math-simons
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Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.”

- Transformers and language models: see concretely how
transformers and language models work.
- bigrams.ipynb: the simplest possible language model.
- transformers.ipynb: a transformer implementation and
detailed code for training it as a language model.

- Makemore on mathematical sequences: train a transformer
using a library as a black box, and evaluate its generations.
- addition.ipynb: train a transformer to do 4-digit addition as in
the talk.
- graphs.ipynb: train a transformer to generate triangle-free
graphs and reproduce the plot from the talk.

Thttps://github.com/wellecks/transformers4math-simons

I
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Thank you!

https://github.com/wellecks/transformers4math-simons

Special thank you to Leni Aniva, Jeremy Avigad, and Adam Wagner for
helping with the preparation of this material.

Sean Welleck, CMU

wellecksacmu.edu
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