
Transformers for Mathematics
Simons and SLMath Workshop on AI for Mathematics and Theoretical CS

Sean Welleck
April 8, 2025
github.com/wellecks/transformers4math-simons

Carnegie Mellon University

https://github.com/wellecks/transformers4math-simons

AI for Mathematics

Discovering Lyapunov
functions

[Alfarano et al 2024]
Finding

counterexamples
[Charton et al 2024]

Assisting in proofs
[LLMLean 2024]

Common building block: generating sequences with Transformers

1

AI for Mathematics

Discovering Lyapunov
functions

[Alfarano et al 2024]
Finding

counterexamples
[Charton et al 2024]

Assisting in proofs
[LLMLean 2024]

Common building block: generating sequences with Transformers

1

Overview

In this tutorial:

1. What is a transformer?
2. Examples of using transformers on mathematical data
3. Interactive notebook sessions

Notebooks: github.com/wellecks/transformers4math-simons

Thank you to Adam Zsolt Wagner for help in putting together this tutorial.

2

https://github.com/wellecks/transformers4math-simons

Overview

In this tutorial:

1. What is a transformer?
2. Examples of using transformers on mathematical data
3. Interactive notebook sessions

Notebooks: github.com/wellecks/transformers4math-simons

Thank you to Adam Zsolt Wagner for help in putting together this tutorial.

2

https://github.com/wellecks/transformers4math-simons

Introduction to Transformers

• Transformers are a neural
network architecture.

• Key part of large language
models (LLMs) and generative
AI in many domains.

• Maps an input sequence to
an output sequence.

3

Introduction to Transformers

Transformers consist of multiple
“layers” stacked together.

Key components:
• Token embeddings
• Self-attention mechanism

4

Representing inputs: tokenization

• Tokenization: represent an
input as a sequence of
discrete tokens

• Example: a sentence as a
sequence of characters

• Example: a graph as an
adjacency matrix string

5

Representing inputs: tokenization

• Tokenization: represent an
input as a sequence of
discrete tokens

• Example: a sentence as a
sequence of characters

• Example: a graph as an
adjacency matrix string

5

Representing inputs: tokenization

• Tokenization: represent an
input as a sequence of
discrete tokens

• Example: a sentence as a
sequence of characters

• Example: a graph as an
adjacency matrix string

Takeaway: transformers are general purpose! Just find a way to treat
your input as a sequence of tokens and the transformer will accept
it.

5

Representing inputs: token embeddings

• Each token is associated with
a vector called a token
embedding.

• The token embeddings are
passed to main layers of the
transformer.

6

Main layers: self-attention

The attention mechanism is the
fundamental building block of
transformer layers.
• Lets the model focus on different parts
of the input sequence when making
predictions.

• Attention assigns different weights to
each input element.

• These weights determine how much
each element contributes to the output. Attention

7

Why do we need attention?

Consider the bigram model:
• Predicts the next letter based only
on the previous letter.

• Example: when trained on a list of
names, it produces names that lack
coherence and context.

• To improve this, we could take the
average of all previous token
embeddings.

• But taking a simple average may not
capture context well.

Names generated by the
bigram model (bigrams.ipynb)

Takeaway: attention mechanisms learn to effectively use context.

8

Why do we need attention?

Consider the bigram model:
• Predicts the next letter based only
on the previous letter.

• Example: when trained on a list of
names, it produces names that lack
coherence and context.

• To improve this, we could take the
average of all previous token
embeddings.

• But taking a simple average may not
capture context well.

Names generated by the
bigram model (bigrams.ipynb)

Takeaway: attention mechanisms learn to effectively use context.

8

Self-Attention: A Closer Look

• In self-attention, each token in the input sequence emits a
query vector and a key vector.

• Think of the query as asking, ”What am I looking for?” It represents
the token’s context of interest.

• The key is like asking, ”What do I contain?” It represents the
token’s information.

• To compute affinities between keys and queries, we take dot
products:

• High alignment between a key and query results in a larger
weight, indicating the importance of that token for the query.

9

Self-Attention: A Closer Look

• In self-attention, each token in the input sequence emits a
query vector and a key vector.

• Think of the query as asking, ”What am I looking for?” It represents
the token’s context of interest.

• The key is like asking, ”What do I contain?” It represents the
token’s information.

• To compute affinities between keys and queries, we take dot
products:

Affinity(Qi, Kj) = Qi · Kj

• High alignment between a key and query results in a larger
weight, indicating the importance of that token for the query.

9

Self-Attention: A Closer Look

• In self-attention, each token in the input sequence emits a
query vector and a key vector.

• Think of the query as asking, ”What am I looking for?” It represents
the token’s context of interest.

• The key is like asking, ”What do I contain?” It represents the
token’s information.

• To compute affinities between keys and queries, we take dot
products:

Affinity(Qi, Kj) = Qi · Kj

• High alignment between a key and query results in a larger
weight, indicating the importance of that token for the query.

9

Self-Attention: Computing the Context Vector

• After computing affinities between queries and keys, we apply a
softmax function to obtain normalized weights:

Attention(Qi, Kj) =
exp(Qi · Kj)∑
j exp(Qi · Kj)

• These normalized weights, often called attention scores,
represent how much each key contributes to the query.

• We then use these attention scores to take a weighted sum of
the values associated with the keys:

• The resulting context vector for each query captures relevant
information from the entire sequence.

10

Self-Attention: Computing the Context Vector

• After computing affinities between queries and keys, we apply a
softmax function to obtain normalized weights:

Attention(Qi, Kj) =
exp(Qi · Kj)∑
j exp(Qi · Kj)

• These normalized weights, often called attention scores,
represent how much each key contributes to the query.

• We then use these attention scores to take a weighted sum of
the values associated with the keys:

• The resulting context vector for each query captures relevant
information from the entire sequence.

10

Self-Attention: Computing the Context Vector

• After computing affinities between queries and keys, we apply a
softmax function to obtain normalized weights:

Attention(Qi, Kj) =
exp(Qi · Kj)∑
j exp(Qi · Kj)

• These normalized weights, often called attention scores,
represent how much each key contributes to the query.

• We then use these attention scores to take a weighted sum of
the values associated with the keys:

Context Vector(Qi) =
∑
j

Attention(Qi, Kj) · Vj

• The resulting context vector for each query captures relevant
information from the entire sequence.

10

Self-Attention: Computing the Context Vector

• After computing affinities between queries and keys, we apply a
softmax function to obtain normalized weights:

Attention(Qi, Kj) =
exp(Qi · Kj)∑
j exp(Qi · Kj)

• These normalized weights, often called attention scores,
represent how much each key contributes to the query.

• We then use these attention scores to take a weighted sum of
the values associated with the keys:

Context Vector(Qi) =
∑
j

Attention(Qi, Kj) · Vj

• The resulting context vector for each query captures relevant
information from the entire sequence.

10

Queries, Keys, and Values

• Recap: In self-attention, we have three vectors at each token:
1. Query: Think of it as saying, “Here is what I’m interested in.” It
represents the token’s context of interest.

2. Key: Consider it as answering, “Here is what I have.” It represents
the token’s stored information.

3. Value: Imagine it as conveying, “If you find me interesting, here is
what I will communicate to you.” It’s the token’s contribution to
the output.

• Together, these networks enable self-attention to dynamically
weigh and combine information from across the sequence.

11

Let’s do something useful!

We still need to train the model so that it
learns vector representations that are
useful for a task. Example:

• Language modeling: make the
vector at each position useful for
predicting the next token

• Introduce an output layer that
maps the vector to a probability for
each possible next-token

• Minimize a loss that makes the
next-token that appears in the
training sequence more probable

Language modeling

12

Let’s do something useful!

We still need to train the model so that it
learns vector representations that are
useful for a task. Example:

• Language modeling: make the
vector at each position useful for
predicting the next token

• Introduce an output layer that
maps the vector to a probability for
each possible next-token

• Minimize a loss that makes the
next-token that appears in the
training sequence more probable

Language modeling

12

Let’s do something useful!

We still need to train the model so that it
learns vector representations that are
useful for a task. Example:

• Language modeling: make the
vector at each position useful for
predicting the next token

• Introduce an output layer that
maps the vector to a probability for
each possible next-token

• Minimize a loss that makes the
next-token that appears in the
training sequence more probable

Language modeling

12

Let’s do something useful – language modeling

To train the transformer language model we supply a training set of
sequences. The model is trained to predict each next token, i.e.,
increase the token’s probability given the previous tokens.

Examples from the training set (transformer.ipynb)

13

Let’s do something useful – language modeling

After training, we can generate new sequences with the language
model. We generate one token at a time according to the model’s
next-token probabilities.

Transformer-generated names that don’t appear in the training set

Enough names! Let’s generate mathematical things

14

Let’s do something useful – language modeling

After training, we can generate new sequences with the language
model. We generate one token at a time according to the model’s
next-token probabilities.

Transformer-generated names that don’t appear in the training set

Enough names! Let’s generate mathematical things

14

Some math-related applications

• Toy examples
• Computations
• Discovery

15

Toy examples: let’s build some intuition!

Dataset: random {0,1,2} strings of random length between 10 and 15,
that also contain a unique “3” in a random position.

• 11020103221
• 20232212010
• 0112123211221120

We train a transformer on this for a long time. What will the
attention heatmap look like?

16

Heatmap: exactly one 3

17

Toy examples: let’s build some intuition!

Dataset: each sequence is:

• a name
• the count of each unique character that occurs in the name

anna→a2n2
simons→s2i1m1o1n1

...

18

Toy examples: let’s build some intuition!

• Let’s generate 1000 sequences with the trained model:
• 96.6% correct
• 65.5% novel (not in training set)

Example correct and novel generations

Takeaway: a bit noisy (96.6%), but it learns the pattern pretty well
and is not just memorizing the training data!

19

Toy examples: let’s build some intuition!

• Let’s generate 1000 sequences with the trained model:
• 96.6% correct
• 65.5% novel (not in training set)

Example correct and novel generations

Takeaway: a bit noisy (96.6%), but it learns the pattern pretty well
and is not just memorizing the training data!

19

Toy examples: let’s build some intuition!

Accuracy on held out names: 97.3%

Most failure cases:

• Characters with count 3 or 4
• evelee→e3v1l1

• Model forgets to generate a character’s count
• stockton→ s1t2o2c1k1

20

Toy examples: let’s build some intuition!

Accuracy on held out names: 97.3%

Adversarial cases:

• aaa → ab1b1a2
• s3an → a1a1a1a1a1a1a1a1
• ...

21

Some math-related applications

• Toy examples
• Computations
• Discovery

22

Some math-related applications

• Toy examples
• Computations
• Discovery

23

Simple computations: addition

Add two 4-digit integers:

• 2871+9281=12152
• 1000+1000=2000
• ...
• Around 40 million unique unordered pairs.

Plan:

• Train a transformer language model on a dataset of 5 million
addition problems.

• Evaluate it on problems that aren’t in the training set.

24

Simple computations: addition

Add two 4-digit integers:

• 2871+9281=12152
• 1000+1000=2000
• ...
• Around 40 million unique unordered pairs.

Plan:

• Train a transformer language model on a dataset of 5 million
addition problems.

• Evaluate it on problems that aren’t in the training set.

24

Simple computations: addition

• Test accuracy: 100.0%
• It can generate full problems that aren’t in the training set:

New addition problems

Can transformers learn some non-trivial computations?

25

Simple computations: addition

• Test accuracy: 100.0%
• It can generate full problems that aren’t in the training set:

New addition problems

Can transformers learn some non-trivial computations?

25

Symbolic integration [Lample & Charton 2019]

Lample and Charton trained a transformer to take in an equation as a
sequence of tokens, and output its integral as a sequence of tokens.

Problems that the transformer was able to solve, on which Mathematica and
Matlab were not able to find a solution.

They design clever data generation techniques, including
differentiating a synthesized function and adding (f′, f) to the dataset.

26

Symbolic integration [Lample & Charton 2019]

Lample and Charton trained a transformer to take in an equation as a
sequence of tokens, and output its integral as a sequence of tokens.

Problems that the transformer was able to solve, on which Mathematica and
Matlab were not able to find a solution.

Each integral can be verified by taking its derivative. As a result, we
can generate multiple candidates and discard the incorrect ones.

26

Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other prediction problems:

• Solutions to 1st and 2nd-order ODEs [Lample & Charton 2019]

Input:

162x log(x)y′ + 2y3 log(x)2 − 81y log(x) + 81y = 0

Generated solutions:
9
√
x
√

1
log (x)

√
c + 2x

9√
c log (x)

x + 2 log (x)

9
√
x

√
1

c log (x) + 2x log (x) + log (x)

· · ·

27

Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other prediction problems:

• Solutions to 1st and 2nd-order ODEs [Lample & Charton 2019]

Input:

162x log(x)y′ + 2y3 log(x)2 − 81y log(x) + 81y = 0

Generated solutions:
9
√
x
√

1
log (x)

√
c + 2x

9√
c log (x)

x + 2 log (x)

9
√
x

√
1

c log (x) + 2x log (x) + log (x)

· · ·

27

Beyond integration

The recipe of synthesizing data and training a transformer language
model has been explored for several other computations:

• Solutions to 1st and 2nd-order ODEs [Lample & Charton 2019]

• Properties of differential systems (e.g., stability) [Charton et al 2021]
• Global Lyapunov functions [Alfarano et al 2024]
• Frobenius traces from elliptic curves [Babei et al 2025]
• ...

28

Beyond integration

What problems are suitable? Some common themes:

• Verifiable. E.g. we can often verify that
∫
f = g by taking its

derivative with a computer algebra system.
• Data generator. A lot of ingenuity goes into creating a data
generator, e.g. synthesizing random functions and pairing a
function with its derivative

29

Some math-related applications

• Toy examples
• Computations
• Discovery

30

Generating constructions (based on [Charton et al 2024 [1]]

Problem

How many edges can an n-vertex graph have, if no three edges
form a triangle?

Example triangle-free graphs for n = 3 to 6. From [1].

31

Generating constructions

Plan: generate many graphs that satisfy this triangle-free property

• Naive search: keep randomly deleting an edge that is in the
maximum number of triangles. Then keep adding random edges
that don’t introduce a triangle.

score(G) = #edges(G) (1)

32

Generating constructions

Plan: generate many graphs that satisfy this triangle-free property

• Naive search: keep randomly deleting an edge that is in the
maximum number of triangles. Then keep adding random edges
that don’t introduce a triangle.

score(G) = #edges(G) (1)

32

Generating constructions

Score distribution for 100,000 graphs found by the naive search

33

Generating constructions

Let’s represent each adjacency matrix as a string, and a train a transformer!

34

Generating constructions

The transformer learns to generate graphs that have a similar score
distribution.

35

Generating constructions

Instead, train the transformer on the top 10% of graphs from the local search.

36

Generating constructions

Running local search from this transformer’s generated constructions results
in several high-scoring graphs (score 100)

37

Generating constructions

The score 100 graphs are isomorphic, and are bipartite graphs

38

PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

PatternBoost by Charton-Ellenberg-Wagner-Williamson generalizes
this idea. It alternates between:

• Local phase: classical search algorithm produces constructions
• Global phase: train a Transformer on the best constructions,
then generate candidates that are passed to the next local phase

They apply it to several non-trivial problems.

39

PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

Question (Brualdi–Cao)

How large can the permanent of a binary n × n matrix be, that
does not contain the pattern 312?

Example construction for n = 25 with permanent 5,101,230. The initial local
search gets 641,000.

40

PatternBoost [Charton-Ellenberg-Wagner-Williamson 2024]

Conjecture (Graham & Harary 1992)

Themaximum number of edges one can delete from the d-dimensional
hypercube without increasing its diameter is 2d +

(d
⌊d/2⌋

)
− 2.

Counterexample discovered that has d = 6 with 81 < 26 +
(6
3
)
− 2 = 82 edges.

41

Recap

1. What is a transformer?
2. Examples of using transformers on mathematical data

• Toy examples
• Computations
• Discovery

3. Interactive notebook sessions

42

Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.

https://github.com/wellecks/transformers4math-simons

43

https://github.com/wellecks/transformers4math-simons

Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.1

• Transformers and language models: see concretely how
transformers and language models work.

• bigrams.ipynb: the simplest possible language model.
• transformers.ipynb: a transformer implementation and
detailed code for training it as a language model.

• Makemore on mathematical sequences: train a transformer
using a library as a black box, and evaluate its generations.

• addition.ipynb: train a transformer to do 4-digit addition as in
the talk.

• graphs.ipynb: train a transformer to generate triangle-free
graphs and reproduce the plot from the talk.

1https://github.com/wellecks/transformers4math-simons

44

https://github.com/wellecks/transformers4math-simons

Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.1

• Transformers and language models: see concretely how
transformers and language models work.

• bigrams.ipynb: the simplest possible language model.
• transformers.ipynb: a transformer implementation and
detailed code for training it as a language model.

• Makemore on mathematical sequences: train a transformer
using a library as a black box, and evaluate its generations.

• addition.ipynb: train a transformer to do 4-digit addition as in
the talk.

• graphs.ipynb: train a transformer to generate triangle-free
graphs and reproduce the plot from the talk.

1https://github.com/wellecks/transformers4math-simons

44

https://github.com/wellecks/transformers4math-simons

Interactive notebook sessions

For the next two sessions we will provide you with interactive
notebooks to work through.1

• Transformers and language models: see concretely how
transformers and language models work.

• bigrams.ipynb: the simplest possible language model.
• transformers.ipynb: a transformer implementation and
detailed code for training it as a language model.

• Makemore on mathematical sequences: train a transformer
using a library as a black box, and evaluate its generations.

• addition.ipynb: train a transformer to do 4-digit addition as in
the talk.

• graphs.ipynb: train a transformer to generate triangle-free
graphs and reproduce the plot from the talk.

1https://github.com/wellecks/transformers4math-simons

44

https://github.com/wellecks/transformers4math-simons

Thank you!

https://github.com/wellecks/transformers4math-simons

Special thank you to Leni Aniva, Jeremy Avigad, and Adam Wagner for
helping with the preparation of this material.

Sean Welleck, CMU

wellecks@cmu.edu

45

https://github.com/wellecks/transformers4math-simons

References i

F. Charton, J. S. Ellenberg, A. Z. Wagner, and G. Williamson.
Patternboost: Constructions in mathematics with a little help
from ai, 2024.

46

