Can large language models help people prove mathematical theorems?

We present **NaturalProver**, a language model that generates mathematical proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding.

Grounding + references + constrained decoding

NaturalProver is an instance of GPT-3 fine-tuned on NaturalProofs [Welleck et al., Neurips 2021]. NaturalProver adds two components on top of GPT-3:

- **In-context references**: retrieved or provided theorems/definitions relevant to a correct proof.
- **Constrained decoding**: samples multiple next-steps, retains steps in a beam based on constraints.

Natural vs. formal theorem proving

- Rigid
- Not much data
- Easy to verify

- Flexible
- Used in education, science, engineering
- Lots of language data
- Hard to verify!

Figure 1. Classical provers use rigid formal languages. Can LLMs prove in flexible natural language?

Figure 2. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time.

Human-machine collaboration

Figure 3. NaturalProver had > 40% correct and useful next-step predictions. These compound in full-proof generation. An exciting option is human-machine collaboration with multiple suggestions.

Towards verified natural proofs: come see us at the MathAI workshop!