A Few Open Problems in
Neural Theorem Proving

(in Lean)

Sean Welleck
September 5, 2024

Carnegie Mellon University

Neural theorem proving

Use neural networks to: \\e

- Generate proofs in an interactive \—:IVN ,pe a’
WG

proof assistant HEOREM PROVER a& /4

Neural theorem proving | Rapid progress

Rapid progress in methods based on language models:

70
52.5
35

17.5

Jiang 2022 Wu2022 Jiangetal 2023 Zhao 2023 Lin 2024 Wu 2024 Xin 2024

Figure 1: miniF2F benchmark performance, 2022-2024

Neural theorem proving | Rapid progress

theorem imo_ 1960_p2 (x : R) (hp : 0 < 1 + 2 * x) (hy : (1 - Real.sqrt (1 + 2 %

x)) T 2#0)
(hy : 4*x "2/ (1 -Real.sqrt (1 +2 *x)) ~2<2*x+9) :-(1/2)
<X AXx<45/ 8 :=by

norm_num at hg h; hp

have h3 : 0 < 1 + 2 * x := by linarith

have hy : 0 < 1 + Real.sgrt (1 + 2 * x) := by
nlinarith [Real.sqrt_nonneg (1 + 2 * x)]

have hs : 4 * x ~ 2/ (1 - Real.sqrt (1 + 2 * x)) = 2< 2% x + 9 := by
linarith

have hs : 1 - Real.sqrt (1 + 2 * x) # 0 := by
intro h
apply hy
nlinarith

have h; : 4 * x ~ 2/ (1 - Real.sqrt (1 + 2 * x)) =~ 2 = (1 + Real.sqrt (1 +
2 *xx)) ~ 2 :=by
field_simp [hel
nlinarith [sq_sqrt (show O < 1 + 2 * x by linarith)]

rw [h;] at hs

constructor <;> nlinarith [sq_sqrt (show O < 1 + 2 * x by linarith)]

Figure 2: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)

Neural theorem proving | Lean

Why talk about Lean?

- Increasing interest from the mathematical community
- Increasing interest from the Al community

- For Al research, the choice of proof assistant matters ()

3 open problems in neural theorem proving in Lean:

- Going beyond human data
- Going beyond competition problems

- Going beyond mathematics

1. Going beyond human data

Language model-based proving:

- Train a model py(y|x) on a dataset D = {(x,y)}, e.g,
- x: proof state
- y: next tactic (next “step”)
- D: extracted from human-written theorems and proofs

1. Going beyond human data

Language model-based proving:

- Train a model py(y|x) on a dataset D = {(x,y)}, e.g,
- x: proof state
- y: next tactic (next “step”)
- D: extracted from human-written theorems and proofs

- Generate proofs:

(-0.109) apply Nat.le_add_right

type-checked candidates: 1:::::::::::(—0.173) exact Nat.le_add_right _ _
(-0.066) rintro rfl
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Figure 3: Best-first search

e

>

1. Going beyond human data

- Some models are already trained on ~ all Lean projects!
- E.g, Lean-GitHub [5]: data from 237 Lean 4 repos

- More human-written data will help, but difficult to scale’

TPlease don't stop making more publicly available formal mathematics data!

1. Going beyond human data

Open problem I: how do we synthesize useful data?

+ Proofs
- Theorems

- Augmentations (formal, informal, ...)

1. Going beyond human data

Not a new problem; common methods:
- Statement autoformalization [wu et al 2022 [4]]

- Informal theorem — formal theorem

- Expert iteration [Polu et al 2022 [3]]
- Generate proofs with a model, train on successful ones, iterate

1. Going beyond human data

Not a new problem; common methods:
- Statement autoformalization [wu et al 2022 [4]]
- Informal theorem — formal theorem
- Expert iteration [Polu et al 2022 [3]]

- Generate proofs with a model, train on successful ones, iterate

Used in several state-of-the-art methods, e.g. DeepSeek-Prover 1.5, AlphaProof

1. Going beyond human data | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiging Sun, Yiming Yang, Sean Welleck

https://arxiv.org/abs/240710040

1. Going beyond human data | Lean-STaR

Input - Lean State

Nat.lcm 120 b
Nat.ged 120 b
= 208

Output - Lean Tactic

Input - Lean State

i State
b : N

Nat.lcm 120 b
Nat.ged 120 b
28

Output - Natural Language Thought

Reasoning

To determine the specific value of 'b' from the given hypotheses about its greatest common
[divisor (GCD) and least common multiple (LCM) with '120°, we need to relate the given GCD to the
LcH, recognizing the fundamental theorem of greatest common divisors which relates LCH to GCD in
a specific way. This will enable us to establish an equation involving 'b', facilitating the
identification of 'b' through algebraic manipulation

Output - Lean Tactic

Can we do better by interleaving informal steps of reasoning? (right)

1

1. Going beyond human data | Lean-STaR

Input - Lean State
Input - Lean State

it State
b : N
he : Nat.lem 120 b = 3720

w4 State . ¢ Nat.ged 120 b =

b : N b = 2u8

he : Nat.lem 120 b

h. : Nat.ged 120 b

b= 208 Output - Natural Language Thought
Reasoning

To determine the specific value of 'b' from the given hypotheses about its greatest common
[divisor (GCD) and least common multiple (LCM) with '120°, we need to relate the given GCD to the
Lcu, recognizing the fundamental theorem of greatest common divisors which relates LCH to GCD in
la specific way. This will enable us to establish an equation involving ‘b, facilitating the
Output - Lean Tactic

identification of 'b' through algebraic manipulation.
Next tactic:
lhave h := Nat.gcd_mul_lem 120 b

Output - Lean Tactic
et Next tactic:
have h := Nat.gcd_mul_lem 126 b

- Plan proof steps
- Diversify search space

- More tokens can give more computational capacity

1. Going beyond human data | Lean-STaR

Input - Lean State
Input - Lean State

i State
b : N

it State
b : N

: Nat.lem 120 b = 3720
: Nat.ged 120 b =
2u8
he : Nat.lem 120 b
: Nat.ged 120 b
b= 208 Output - Natural Language Thought
Reasoning

To determine the specific value of ‘b’ from the given hypotheses about its greatest common
[divisor (GCD) and least common multiple (LCM) with '120°, we need to relate the given GCD to the
LcM, recognizing the fundamental theorem of greatest common divisors which relates LCM to GCD in

la specific way. This will enable us to establish an equation involving ‘b, facilitating the
identification of ‘b’ through algebraic manipulation.

v

Output - Lean Tactic
et Next tactic:
have h := Nat.gcd_mul_lem 126 b

Output - Lean Tactic

Next tactic:
have h := Nat.gcd_mul_Lem 120 b

Why?
- Plan proof steps
- Diversify search space

- More tokens can give more computational capacity
Data doesn't exist! We need to synthesize it.

1. Going beyond human data | Lean-STaR

Lean-STaR (Self-taught reasoner?)

Step 1: generate an informal “thought” with an off-the-shelf
language model retrospectively

- (state, tactic) — thought

Train an initial model on a dataset of such examples:

- pY(thought, tactic|state)

ZInspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model

(-0.109) apply Nat.le_add_right

\/
type-checked candidates: /(—0.173) exact Nat.le_add_right _ _ \a;
(-0.066) rintro rfl ’
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Figure 4: Best-first search: difficult to score (thought, tactic) candidates

14

1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model
State 0
(Root)
\
legal legal legal illegal

State 1

State 2 |legal State 3 State 0
legal legal Ie\T/al Ieial

g

State 4 State 5

legal

H @
i @g_)
-—3

Figure 5: New sampling method
14

1. Going beyond human data | Lean-STaR

Step 3: train on the successful proofs, and repeat:?

- Collect (state, thought, tactic) from successful proofs
- Train a new model pj(thought, tactic|state)

- Generate proofs

3.e. Expert Iteration [Polu et al 2022 [3]]

1. Going beyond human data | Lean-STaR

- miniF2F [7]: competition problems (AMC, AIME, IMO)

Problem 1959 IMO Problems/Problem 1

o 2ln+4 i
Prove that the fraction T+ is irreducible for every natural number n.
7

3

train [mathlio !
test y 1 imo_1959_p1
(n : N)

(he : @ <n) :
Nat.gcd (21xn + 4) (14%n + 3) = 1 := by sorry

1. Going beyond human data | Lean-STaR

0o GPT-4

0o ReProver

lo COPRA (GPT-4)
In Lean-STaR 7B (start)

I leansTar7B (+ thoughts)
lmLean-star 7B (+ expert iteration)

Pass rate

miniF2F test

Figure 6: MiniF2F test

1. Going beyond human data | Lean-STaR

0o GPT-4

0o ReProver

lo COPRA (GPT-4)
In Lean-STaR 7B+ (start)

I lean-sTar78B+ (+ thoughts)
D@ Lean-star 7B+ (+ expert iteration)

Pass rate

miniF2F test

Figure 7: MiniF2F test

1. Going beyond human data | Lean-STaR

theorem amc12a_2002_p6 (n : N) (hp : 0 < n)
:3dm,m>nAJp, m*xp <m+p:=
use n + 1, by linarith only [hol -- Reasoning: To demonstrate the ezistence of
such an 'm’ and “p° that satisfy the given inequalities, we leverage the
property of natural numbers that ensures an increase in 'n° from “0° leads to
the possibility of finding such "m” and “p°. This approach is supported by the
fundamental property of natural numbers and their arithmetic operations,
suggesting that for a given ‘n° greater than '0°, there ezists a successor "m’
and a number ‘p’ that satisfy the conditions outlined.
exact {0, by simp) -- Reasoning: To demonstrate that there exists an \(n \in N
\) such that \((n + 1) * p \legqn + 1 + p\) holds for some \(p \in N\), we
recognize that setting \(p = 0\) satisfies the inequality by the properties of
zero in arithmetic. This is because \(n + 1 > 0\) by assumption, ensuring the
left-hand side is non-negative and the right-hand side simplifies to \(n +
1\), making the inequality trivially true.

Figure 8: Example generated thoughts and proof from Lean-STaR

19

1. Going beyond human data | Lean-STaR

theoren aine 1983.p2 (x p 1 R) (£ : R 5> R) (o : 0<pAP<18) (m :p<xAx
<15

By tn e g e e 10 e 199

Cases® I ¥ith by by - Reasoning: Given a function |(11) defined over the real
numbers, where 1(7(2)\) equals the sun of the absolute values of the

and at \(151)

can establish a lower bound

\(151)

. abs_of_nonneg (sub_nonnes

Reasoning: e abjective s to show hat |(1(2)\) s at least 15 ;N \

within the bounds |(p |le = \le 151), where |(pl) 43 positive b
The provided sapression for |(1(e)\) suggerts using propertics of absotute

\(f(2)\). By applying

: 5
i md Lhc Junction “f°. Since the

e
congr 1 -- Reasoning: To establish the inequality

181 - 3 e recognise that the Left-hand vide of y involves a
miz of additions and subtra 1 nunbers a congruence
transfornation that simplifie. ons invetving absoiute values, ve ain to
align both sides of the inequality in a form that directly reflects

properties of real nunbers nder these, operations

simp only [abs_of. r) o . it
T o pessoning’ The obgestiva e B0 prove.om meuiiity. savoiving sbesiets

vslues and subiractions that aligna the gtven condisions end constratate

Simplificat e propertics of abeolute values and the provided bounds
can directly Lead to the Heired concausion by copressing the spsotute vatues
in terns of their underlying ecpressions and applying th

straints
sinp [abs_of pos, *] -- Reasoning: To prove the given inequality involving
g algedraic p

hpotheses will directiy Lead us to the desired inequality by recogniing the
algebraic manipulation and application of the known bounds »

well as the non-negativity of

rv (abs_of_nonpos] -~ Reasoning 3 hat 15 < 15
0z - p - 15] - p* under the given constraints on 'p’ and 'z'. Given 'p < 15

1

itive, This

propertics, demonstrating the inequality's validity under the given conditions

Figure 9: Example generated thoughts and proof from Lean-STaR 20

1. Going beyond human data | Lean-STaR

Performance Comparison

35

Percentage (%)
& 8

N
o

—e— SFT-Direct (Search)
15 —e— SFT-Direct (Sampling)
—e— Lean-STAR (Sampling)

32 64
Search budget

Figure 10: Increasing the search budget is more effective with thoughts

21

3 open problems in neural theorem proving in Lean:

- Going beyond human data
- Synthesizing data: problems, proofs, plans, ...
- Going beyond competition problems

- Going beyond mathematics

22

2. Going beyond competition problems

Lots of exciting progress! Some methods can solve IMO problems!

However, not much impact on proving in practice.

23

2. Going beyond competition problems

Accessibility gap:

- Some methods are hard to integrate into tools

- Not open-source (AlphaProof, ...)
- Expensive to run (MCTS, ...)

24

2. Going beyond competition problems

Accessibility gap:

- Some methods are hard to integrate into tools

- Not open-source (AlphaProof, ...)
- Expensive to run (MCTS, ...)

However, there are model-agnostic tools available to plug into!

24

2. Going beyond competition problems

vlimstep suggestions

:RE€S-ScT-RCT:=
hr hs Try this:
; — VN L .

:

Send proof state +

doc context LLMLean Verified suggestions

Figure 11: https://github.com/cmu-13/llmlean

25

2. Going beyond competition problems

LLMLean & .. Ollama
\jw [0 o .
Fo, . Cloud
LLM AP
@OpenAI

Figure 12: https://github.com/cmu-13/llmlean

25

2. Going beyond competition problems

asure (u[|Y « yl) := cond_isProbabilityMeasure _

finiteRange (h
Finite

Figure 13: Example on Polynomial Freiman Rusza Conjecture project
https://github.com/cmu-13/llmlean

25

2. Going beyond competition problems

Benchmarking gap:

- Benchmark improvements (e.g., on competition problems) do
not measure improvement in real-world proving conditions

26

2. Going beyond competition problems

pytorch / pytorch

© Issues 5k+ {1 Pullrequests 1.1k

py

Pt/‘thon
Interview Question

Code in o real repository

Figure 14: Interview questions # real code development

27

2. Going beyond competition problems
Existing Theorems and Existing Theorems and
Proofs Proofs
Teain Cegy Mathlib) Cegn Mathlib)

New Formalization
(e.g. Prime Number Theorem)

New defintions, lemmas, ...

Dependent test
theorem

Competition PmuC’“S Context-dependent proving

Figure 15: Competition problems # real proof development

28

2. Going beyond competition problems

Real-world proving is context-dependent:

- (context, theorem) — proof
- Context: repository of code, new definitions, auxiliary lemmas

29

2. Going beyond competition problems

Generalization to new contexts is studied in other proof assistants,
e.g., online setting®, testing on held-out repositories®

Not a focus for state-of-the-art models/benchmarks in Lean!

“Tactician [2], Graph2Tac [1]
>CoqGym [6]

30

2. Going beyond competition problems | miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts
Jiewen Hu, Thomas Zhu, Sean Welleck

https://www.arxiv.org/abs/2408.03350

31

2. Going beyond competition problems | miniCTX

miniCTX:
Collect (context, theorem) examples from real Lean projects:®
- “Future mathlib”: theorems added after a time cutoff

- Recent projects: PFR, PrimeNumberTheorem
- Textbook exercises: How To Prove It, Math 2001

6+ tools for easily adding new projects: https://github.com/cmu-13/ntp-toolkit

32

2. Going beyond competition problems | miniCTX

miniCTX:
Collect (context, theorem) examples from real Lean projects:®

- “Future mathlib”: theorems added after a time cutoff
- Recent projects: PFR, PrimeNumberTheorem
- Textbook exercises: How To Prove It, Math 2001

Goal: generalize to new theorems/contexts/repositories

6+ tools for easily adding new projects: https://github.com/cmu-13/ntp-toolkit

32

2. Going beyond competition problems | miniCTX

Context:

- Preceding code in the file
- All accessible premises

- Repository metadata (to recover any other code)

33

2. Going beyond competition problems | miniCTX

Does context actually matter? A simple experiment.

File context
&/e_v AT, Nommas, J}
Proof State] ([Wew theorem to prove)
J

from Lean l[Proof so far

\L ProoP State
Next s‘te,p from L.eom
(tac‘t-c)

A/ext step
(tactlc)

F'ile_ 'T"un'm::/

State-tactic
Tuning

Figure 16: “File tuning”: train on (preceding code, state, next-tactic) examples
34

2. Going beyond competition problems | miniCT

Two methods can have similar performance on competition
problems, but vastly difference performance on actual projects:

| MiniF2F | MiniCTX
Models | Test | Prime PFR Mathlib HTPI | Avg.
GPT-4o (full proof) - 1.15% 5.56% 2.00% 9.73% 5.59%
GPT-40 (+ context) - 13.79% 1.85% 18.00% 31.89% | 22.07%
State-tactic prompting | 28.28% | 19.54% 5.56% _16.00% 19.15% | 20.61%
State-tactic tuning 32.79% ||| 11.49% 5.56% 22.00% 5.95% 9.31%
File tuning 33.61% || 32.18% 5.56% 34.00% 38.38% | 31.65%

35

2. Going beyond competition problems | deployment

File-tuned model is deployed in LLMLean:

LLM on your laptop:

1. Install

2. Pull a language model:

ollama pull wellecks/ntpctx-1lama3-8b

Figure 17: https://github.com/cmu-13/llmlean

36

2. Going beyond competition problems | deployment

Several open-source artifacts:

- Data/models: https://huggingface.co/131ab
- Data extraction: https://github.com/cmu-13/ntp-toolkit
- Evaluation: https://github.com/cmu-13/minictx-eval

37

https://huggingface.co/l3lab
https://github.com/cmu-l3/ntp-toolkit
https://github.com/cmu-l3/minictx-eval

2. Going beyond competition problems | miniCTX

Many approaches to explore in the future:

- “File tuning”: context is preceding code
- Premise selection: context is a set of definitions and theorems

- Full repo: context is all other code in the repository

38

2. Going beyond competition problems

Many other potential tools beyond proof completion!

39

3 open problems in neural theorem proving in Lean:

- Going beyond human data
- Synthesizing data

- Going beyond competition problems
- Have actual tools as a goal

- Going beyond mathematics

40

3. Going beyond mathematics | miniCodeProps

miniCodeProps: a Minimal Benchmark for Proving Code Properties
Evan Lohn, Sean Welleck

https://arxiv.org/abs/240611915

41

3. Going beyond mathematics

Interactive theorem provers

+ Mathematics:

- Math as code
- Guarantees on proof correctness

- Code:
- Prove properties of code

42

3. Going beyond mathematics

Formally verified code

r
% N ([M
Code Property
MyTree (a:) balanced_tree_size_odd
: MyTree a + (t: MyTree a) (hb: balanced t): 0dd (tree_size t) :=
MyTree o - a - MyTree a - MyTree a
"The size of a balanced tree is odd"
tree_size : MyTree a - N v
.leaf = 1 I
.node 1 _x r => 1+ (tree_size 1) + (tree_size r) (w Proof
balanced : MyTree a -
t
x r => ((tree_size 1 | leaf => [tree_size]
ize r)) A (balanced 1) A (balanced r) | node p x q =>
tree_size
Tree implementation balanced hb
& U [hb.1]
&

43

3. Going beyond mathematics

AWS Open Source Blog

Lean Into Verified Software Development
by Kesha Hietala and Emina Torlak | on 08 APR 2024 | in Amazon Verified Permissions, Open Source, Security, Identity, &
Compliance, Technical How-to | Permalink | ® Comments | # Share

Some software components are

business logic. There are a growi|
automated reasoning. In develog
proof assistant is a great tool for

Cedar Lean

This folder contains the Lean formalization of, and proofs about, Cedar.

Auto-generated documentation is available at

Figure 18: https://aws.amazon.com/blogs/opensource/lean-into-verified-
software-development/

I

3. Going beyond mathematics

Al/neural theorem proving for program verification is actively
studied in other proof assistants, such as Coq and Isabelle.

Not in Lean!

45

3. Going beyond mathematics

Our question:

- What is the simplest program verification scenario that:

- Is a subproblem of the full ‘verification problem’
- Breaks current neural theorem proving methods

46

3. Going beyond mathematics

Our question:

- What is the simplest program verification scenario that:

- Is a subproblem of the full ‘verification problem’
- Breaks current neural theorem proving methods

“Simple”™:

- Self-contained, no complex dependencies

- Relatively small (fast, cheap evaluation)

46

3. Going beyond mathematics

Formally verified code

7 Code w v Property

MyTree (a:)

balanced_tree_size_odd

| leaf : MyTree a + (t: MyTree a) alanced t): 0dd (tree_size t)
| node : MyTree a - a - MyTree a - MyTree

"The size of a balanced tree is odd"
tree_size : MyTree a - N 7 7
| .leaf => 1
| .node 1 _x r => 1+ (tree_size 1) + (tree_size r) N Proof 2\

balanced : MyTree a -

t
= | leaf => [tree_size]
1 A (balanced r) | node p x q =>
tree_size
Tree implementation balanced hb

G Y, [hb.1]

Subproblem: theorem proving! Given (code, property), generate proof

47

3. Going beyond mathematics | miniCodeProps

Code blocks and 201 properties from Tons of Inductive Problems’,
translated from Haskell to Lean.

Tons of Inductive miniCodeProps
Problems
. ranslate
s=====4 - +
R——
N— Termination
(E i

Lemmas

Code + 201 Properties

» EIN

Haskell

https://tip-org.github.io/, Claessen et al 2015
48

3. Going beyond mathematics | miniCodeProps

MiniCodeProps

- Implementation + properties about lists, trees, and heaps
- Classified into difficulties:

- Easy: Data structure properties
- Medium: Termination properties
- Hard: Sorting algorithm properties

49

3. Going beyond mathematics | miniCodeProps

Evaluation:
- Given property and all dependent code, generate a proof
Models:

- GPT-40: generate full proof, 32 attempts + 1 round of refinement
- ntp-ctx: generate a proof via best-first search

https://github.com/cmu-13/minicodeprops-eval

50

https://github.com/cmu-l3/minicodeprops-eval

3. Going beyond mathematics | miniCodeProps

Model Easy Medium & Hard Overall
GPT-40 (32 samples] 75.6% (65/86)| 4.34% (5/115) 34.8% (70/201)
+ refinement 77.9% (67/86)| 6.96% (8/115) 37.3% (75/201)

ntp-context-1.3B 72.1% (62/86)| 8.69% (10/115) 35.8% (72/201)

Figure 19: Baselines perform well on easy properties

51

3. Going beyond mathematics | miniCodeProps

Model Easy Medium & Hard || Overall

GPT-40 (32 samples) 75.6% (65/86)] 4.34% (5/115) 34.8% (70/201)
+ refinement 77.9% (67/86)] 6.96% (8/115) 37.3% (75/201)
ntp-context-1.3B 72.1% (62/86)) 8.69% (10/115) [35.8% (72/201)

Figure 20: Poor performance on medium/hard properties

51

3. Going beyond mathematics | miniCodeProps

import Mathlib

butlast : List a - List «a
| 1 =11
| [x] => 1[I

| x::xs => x::(butlast xs)

f butlastConcat : List a -» List a -» List a
| xs, [l => butlast xs
| xs, ys => xs ++ butlast ys

theorem prop_49 (xs: List Nat) (ys: List Nat) :
(butlast (xs ++ ys) = butlastConcat xs ys) :=
| 1 yS 1 Xs
nil =>
ip - [butlast, butlastConcat]
cons y ys ih =>
[butlast, butlastConcat]
d XS
nil =>
p- [butlast, butlastConcat]
cons x xs ih' =>
imp [butlast, butlastConcat, List.cons_append, ih'”

Figure 21: Successful proof (GPT-40)

3. Going beyond mathematics | miniCodeProps

Mathlib

filter : List Nat - (Nat - Bool) - List Nat
|, f=1
| x::xs, f => f x x::(filter xs f) (filter xs f)

gsort_term2 (x:Nat) (xs: List Nat) :
List.length (filter xs y => decide (y > x)) < Nat.succ (List.length xs) :=
xs
| nil =>
[filter, Nat.zero_lt_succ]
| cons y ys ih =>
[filter]
]
[List.length]
Nat.succ_lt_succ ih
[List.length]
Nat.lt_succ_of_1t ih

Figure 22: Successful proof (GPT-40)

52

3. Going beyond mathematics | miniCodeProps

Figure 23: Human-written proof showing potential lensth of proofs

3 open problems in neural theorem proving in Lean:

- Going beyond human data

- Synthesizing data: problems, proofs, plans, ...
- Going beyond competition problems

- Have actual tools as a goal
- Going beyond mathematics

- Program verification

53

Thank you!

Haohan Lin (Tsinghua)
Evan Lohn (CMU)
Jiewen Hu (CMU)

Zhiging Sun (CMU)
Yiming Yang (CMU)
Thomas Zhu (CMU)

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiging Sun, Yiming Yang, Sean Welleck, 2024.

miniCTX: Neural Theorem Proving with (Long-)Contexts.
Jiewen Hu, Thomas Zhu, Sean Welleck, 2024.

miniCodeProps: a Minimal Benchmark for Proving Code Properties.
Evan Lohn, Sean Welleck, 2024.

Sean Welleck (CMU)
Learning, Language, and Logic (L3) Lab

54

https://cmu-l3.github.io/

References i

[§ L Blaauwbroek, M. Ol3ak, J. Rute, F. I. S. Massolo, . Piepenbrock,
and V. Pestun.
Graph2tac: Online representation learning of formal math

concepts.
In Forty-first International Conference on Machine Learning, 2024.

3 L Blaauwbroek, J. Urban, and H. Geuvers.
The Tactician: A Seamless, Interactive Tactic Learner and Prover

for Coq, page 271-277.
Springer International Publishing, 2020.

55

References ii

[§ S.Polu,). M. Han, K. Zheng, M. Baksys, I. Babuschkin, and
|. Sutskever.
Formal mathematics statement curriculum learning.
In The Eleventh International Conference on Learning
Representations, 2023.

G Y. wu A Q Jiang, W. Li, M. N. Rabe, C. E. Staats, M. Jamnik, and
C. Szegedy.
Autoformalization with large language models.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022.

@ Z.Wu,). Wang, D. Lin, and K. Chen.
Lean-github: Compiling github lean repositories for a versatile
lean prover, 2024.

56

References iii

[§ K Yangand). Deng.
Learning to prove theorems via interacting with proof
assistants.
ArXiv, abs/1905.09381, 2019.

;K Zheng,). M. Han, and S. Polu.
minif2f: a cross-system benchmark for formal olympiad-level
mathematics.
In International Conference on Learning Representations, 2022.

57

