
A Few Open Problems in
Neural Theorem Proving
(in Lean)

Sean Welleck
September 5, 2024

Carnegie Mellon University



Neural theorem proving

Use neural networks to:
• Generate proofs in an interactive
proof assistant

1



Neural theorem proving | Rapid progress

Rapid progress in methods based on language models:

Figure 1: miniF2F benchmark performance, 2022-2024

2



Neural theorem proving | Rapid progress

Figure 2: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)

3



Neural theorem proving | Lean

Why talk about Lean?

• Increasing interest from the mathematical community
• Increasing interest from the AI community
• For AI research, the choice of proof assistant matters (not ideal!)

4



This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Going beyond competition problems
• Going beyond mathematics

5



1. Going beyond human data

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from human-written theorems and proofs

• Generate proofs:

Figure 3: Best-first search

6



1. Going beyond human data

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from human-written theorems and proofs

• Generate proofs:

Figure 3: Best-first search

6



1. Going beyond human data

• Some models are already trained on ≈ all Lean projects!
• E.g., Lean-GitHub [5]: data from 237 Lean 4 repos

• More human-written data will help, but difficult to scale1

1Please don’t stop making more publicly available formal mathematics data!

7



1. Going beyond human data

Open problem I: how do we synthesize useful data?

• Proofs
• Theorems
• Augmentations (formal, informal, ...)
• ...

8



1. Going beyond human data

Not a new problem; common methods:

• Statement autoformalization [Wu et al 2022 [4]]

• Informal theorem→ formal theorem

• Expert iteration [Polu et al 2022 [3]]

• Generate proofs with a model, train on successful ones, iterate

Used in several state-of-the-art methods, e.g. DeepSeek-Prover 1.5, AlphaProof

9



1. Going beyond human data

Not a new problem; common methods:

• Statement autoformalization [Wu et al 2022 [4]]

• Informal theorem→ formal theorem

• Expert iteration [Polu et al 2022 [3]]

• Generate proofs with a model, train on successful ones, iterate

Used in several state-of-the-art methods, e.g. DeepSeek-Prover 1.5, AlphaProof

9



1. Going beyond human data | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck
https://arxiv.org/abs/2407.10040

10



1. Going beyond human data | Lean-STaR

Can we do better by interleaving informal steps of reasoning? (right)

11



1. Going beyond human data | Lean-STaR

Why?

• Plan proof steps
• Diversify search space
• More tokens can give more computational capacity

Data doesn’t exist! We need to synthesize it.

12



1. Going beyond human data | Lean-STaR

Why?

• Plan proof steps
• Diversify search space
• More tokens can give more computational capacity

Data doesn’t exist! We need to synthesize it.
12



1. Going beyond human data | Lean-STaR

Lean-STaR (Self-taught reasoner2)

Step 1: generate an informal “thought” with an off-the-shelf
language model retrospectively

• (state, tactic)→ thought

Train an initial model on a dataset of such examples:

• p0θ(thought, tactic|state)

2Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

13



1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model

Figure 4: Best-first search: difficult to score (thought, tactic) candidates

14



1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model

Figure 5: New sampling method
14



1. Going beyond human data | Lean-STaR

Step 3: train on the successful proofs, and repeat:3

• Collect (state, thought, tactic) from successful proofs
• Train a new model p1θ(thought, tactic|state)
• Generate proofs
• ...

3I.e. Expert Iteration [Polu et al 2022 [3]]

15



1. Going beyond human data | Lean-STaR

• miniF2F [7]: competition problems (AMC, AIME, IMO)

16



1. Going beyond human data | Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

Pa
ss
ra
te

GPT-4
ReProver

COPRA (GPT-4)
Lean-STaR 7B (start)

Lean-STaR 7B (+ thoughts)
Lean-STaR 7B (+ expert iteration)

Figure 6: MiniF2F test

17



1. Going beyond human data | Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

Pa
ss
ra
te

GPT-4
ReProver

COPRA (GPT-4)
Lean-STaR 7B+ (start)

Lean-STaR 7B+ (+ thoughts)
Lean-STaR 7B+ (+ expert iteration)

Figure 7: MiniF2F test

18



1. Going beyond human data | Lean-STaR

Figure 8: Example generated thoughts and proof from Lean-STaR

19



1. Going beyond human data | Lean-STaR

Figure 9: Example generated thoughts and proof from Lean-STaR 20



1. Going beyond human data | Lean-STaR

Figure 10: Increasing the search budget is more effective with thoughts

21



This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data: problems, proofs, plans, ...

• Going beyond competition problems
• Going beyond mathematics

22



2. Going beyond competition problems

Lots of exciting progress! Some methods can solve IMO problems!

However, not much impact on proving in practice.

23



2. Going beyond competition problems

Accessibility gap:

• Some methods are hard to integrate into tools
• Not open-source (AlphaProof, ...)
• Expensive to run (MCTS, ...)

However, there are model-agnostic tools available to plug into!

24



2. Going beyond competition problems

Accessibility gap:

• Some methods are hard to integrate into tools
• Not open-source (AlphaProof, ...)
• Expensive to run (MCTS, ...)

However, there are model-agnostic tools available to plug into!

24



2. Going beyond competition problems

Figure 11: https://github.com/cmu-l3/llmlean

25



2. Going beyond competition problems

Figure 12: https://github.com/cmu-l3/llmlean

25



2. Going beyond competition problems

Figure 13: Example on Polynomial Freiman Rusza Conjecture project
https://github.com/cmu-l3/llmlean

25



2. Going beyond competition problems

Benchmarking gap:

• Benchmark improvements (e.g., on competition problems) do
not measure improvement in real-world proving conditions

26



2. Going beyond competition problems

Figure 14: Interview questions ̸= real code development

27



2. Going beyond competition problems

Figure 15: Competition problems ̸= real proof development

28



2. Going beyond competition problems

Real-world proving is context-dependent:

• (context, theorem)→ proof
• Context: repository of code, new definitions, auxiliary lemmas

29



2. Going beyond competition problems

Generalization to new contexts is studied in other proof assistants,
e.g., online setting4, testing on held-out repositories5

Not a focus for state-of-the-art models/benchmarks in Lean!

4Tactician [2], Graph2Tac [1]
5CoqGym [6]

30



2. Going beyond competition problems | miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts
Jiewen Hu, Thomas Zhu, Sean Welleck
https://www.arxiv.org/abs/2408.03350

31



2. Going beyond competition problems | miniCTX

miniCTX:

Collect (context, theorem) examples from real Lean projects:6

• “Future mathlib”: theorems added after a time cutoff
• Recent projects: PFR, PrimeNumberTheorem
• Textbook exercises: How To Prove It, Math 2001

Goal: generalize to new theorems/contexts/repositories

6+ tools for easily adding new projects: https://github.com/cmu-l3/ntp-toolkit

32



2. Going beyond competition problems | miniCTX

miniCTX:

Collect (context, theorem) examples from real Lean projects:6

• “Future mathlib”: theorems added after a time cutoff
• Recent projects: PFR, PrimeNumberTheorem
• Textbook exercises: How To Prove It, Math 2001

Goal: generalize to new theorems/contexts/repositories

6+ tools for easily adding new projects: https://github.com/cmu-l3/ntp-toolkit

32



2. Going beyond competition problems | miniCTX

Context:

• Preceding code in the file
• All accessible premises
• Repository metadata (to recover any other code)

33



2. Going beyond competition problems | miniCTX

Does context actually matter? A simple experiment.

Figure 16: “File tuning”: train on (preceding code, state, next-tactic) examples
34



2. Going beyond competition problems | miniCTX

Two methods can have similar performance on competition
problems, but vastly difference performance on actual projects:

35



2. Going beyond competition problems | deployment

File-tuned model is deployed in LLMLean:

Figure 17: https://github.com/cmu-l3/llmlean

36



2. Going beyond competition problems | deployment

Several open-source artifacts:

• Data/models: https://huggingface.co/l3lab
• Data extraction: https://github.com/cmu-l3/ntp-toolkit
• Evaluation: https://github.com/cmu-l3/minictx-eval

37

https://huggingface.co/l3lab
https://github.com/cmu-l3/ntp-toolkit
https://github.com/cmu-l3/minictx-eval


2. Going beyond competition problems | miniCTX

Many approaches to explore in the future:

• “File tuning”: context is preceding code
• Premise selection: context is a set of definitions and theorems
• Full repo: context is all other code in the repository
• ...

38



2. Going beyond competition problems

Many other potential tools beyond proof completion!

39



This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data

• Going beyond competition problems
• Have actual tools as a goal

• Going beyond mathematics

40



3. Going beyond mathematics | miniCodeProps

miniCodeProps: a Minimal Benchmark for Proving Code Properties
Evan Lohn, Sean Welleck
https://arxiv.org/abs/2406.11915

41



3. Going beyond mathematics

Interactive theorem provers

• Mathematics:
• Math as code
• Guarantees on proof correctness

• Code:
• Prove properties of code

42



3. Going beyond mathematics

43



3. Going beyond mathematics

Figure 18: https://aws.amazon.com/blogs/opensource/lean-into-verified-
software-development/

44



3. Going beyond mathematics

AI/neural theorem proving for program verification is actively
studied in other proof assistants, such as Coq and Isabelle.

Not in Lean!

45



3. Going beyond mathematics

Our question:

• What is the simplest program verification scenario that:
• Is a subproblem of the full ‘verification problem’
• Breaks current neural theorem proving methods

“Simple”:

• Self-contained, no complex dependencies

• Relatively small (fast, cheap evaluation)

46



3. Going beyond mathematics

Our question:

• What is the simplest program verification scenario that:
• Is a subproblem of the full ‘verification problem’
• Breaks current neural theorem proving methods

“Simple”:

• Self-contained, no complex dependencies

• Relatively small (fast, cheap evaluation)

46



3. Going beyond mathematics

Subproblem: theorem proving! Given (code, property), generate proof

47



3. Going beyond mathematics | miniCodeProps

Code blocks and 201 properties from Tons of Inductive Problems7,
translated from Haskell to Lean.

7https://tip-org.github.io/, Claessen et al 2015

48



3. Going beyond mathematics | miniCodeProps

MiniCodeProps

• Implementation + properties about lists, trees, and heaps
• Classified into difficulties:

• Easy: Data structure properties
• Medium: Termination properties
• Hard: Sorting algorithm properties

49



3. Going beyond mathematics | miniCodeProps

Evaluation:

• Given property and all dependent code, generate a proof

Models:

• GPT-4o: generate full proof, 32 attempts + 1 round of refinement
• ntp-ctx: generate a proof via best-first search

https://github.com/cmu-l3/minicodeprops-eval

50

https://github.com/cmu-l3/minicodeprops-eval


3. Going beyond mathematics | miniCodeProps

Figure 19: Baselines perform well on easy properties

51



3. Going beyond mathematics | miniCodeProps

Figure 20: Poor performance on medium/hard properties

51



3. Going beyond mathematics | miniCodeProps

Figure 21: Successful proof (GPT-4o) 52



3. Going beyond mathematics | miniCodeProps

Figure 22: Successful proof (GPT-4o)

52



3. Going beyond mathematics | miniCodeProps

Figure 23: Human-written proof showing potential length of proofs
52



This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data: problems, proofs, plans, ...

• Going beyond competition problems
• Have actual tools as a goal

• Going beyond mathematics
• Program verification

53



Thank you!

Haohan Lin (Tsinghua)
Evan Lohn (CMU)
Jiewen Hu (CMU)
Zhiqing Sun (CMU)
Yiming Yang (CMU)
Thomas Zhu (CMU)

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck, 2024.

miniCTX: Neural Theorem Proving with (Long-)Contexts.
Jiewen Hu, Thomas Zhu, Sean Welleck, 2024.

miniCodeProps: a Minimal Benchmark for Proving Code Properties.
Evan Lohn, Sean Welleck, 2024.

Sean Welleck (CMU)
Learning, Language, and Logic (L3) Lab

54

https://cmu-l3.github.io/


References i

L. Blaauwbroek, M. Olšák, J. Rute, F. I. S. Massolo, J. Piepenbrock,
and V. Pestun.
Graph2tac: Online representation learning of formal math
concepts.
In Forty-first International Conference on Machine Learning, 2024.

L. Blaauwbroek, J. Urban, and H. Geuvers.
The Tactician: A Seamless, Interactive Tactic Learner and Prover
for Coq, page 271–277.
Springer International Publishing, 2020.

55



References ii

S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and
I. Sutskever.
Formal mathematics statement curriculum learning.
In The Eleventh International Conference on Learning
Representations, 2023.

Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. E. Staats, M. Jamnik, and
C. Szegedy.
Autoformalization with large language models.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022.

Z. Wu, J. Wang, D. Lin, and K. Chen.
Lean-github: Compiling github lean repositories for a versatile
lean prover, 2024.

56



References iii

K. Yang and J. Deng.
Learning to prove theorems via interacting with proof
assistants.
ArXiv, abs/1905.09381, 2019.
K. Zheng, J. M. Han, and S. Polu.
minif2f: a cross-system benchmark for formal olympiad-level
mathematics.
In International Conference on Learning Representations, 2022.

57


