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Today’s talk

Algorithms for generating outputs with a
language model



Today’s talk

Algorithms for generating outputs with a
language model

Why? Use test-time compute to improve performance



Language models

Al achieves silver-medal standard solving
International Mathematical Olympiad
problems

Solving olympiad problems

Writing code

Tasks framed as generating sequences: many other applications



Approach 1: scale pretraining compute

[2020-] Scale training-time compute: larger model, larger dataset
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Scaling Laws for Neural Language Models [Kaplan et al., 2020]



Approach 2: scale test-time compute

[Now] Test-time scaling: increase compute at generation time
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Test-time compute vs. accuracy ([OpenAl, 2024])



Test-time scaling strategies

1. Generate multiple times

2 +2=5.. . -
Generator < m Evaluator [ Select
The answer is 4 —_— e



Test-time scaling strategies

1. Generate multiple times

MATH Benchmark
55
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Test-time scaling strategies

1. Generate multiple times

2. Generate longer outputs

input -> answer input -> (thought|, answer

Model Output
A: The answer is 27. x )

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.




Test-time scaling strategies

1. Generate multiple times
2. Generate longer outputs
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Test-time scaling strategies

RO+ & @ 11-qwen-1.5b-max v 2 Eject A

If x is even, x + 5 is odd. @ Appearance G Clear Al @ Duplicate

You

Prove that if x is even, x + 5 is odd. Think for 500 tokens.

Assistant = 11-qwen-1.5b-max

**

Okay, so | need to prove that if x is even, then x + 5 is odd. Hmm, let me think about this step by
step.

First, | remember that an even number is any integer that can be written as 2k, where k is an integer.

Bay F s mE e = e e s e R

Type a message and press Enter to send ...

Z

Demo: L1 reasoning model [Aggarwal and Welleck, 2025] on a laptop




Test-time scaling strategies

1. Generate multiple times
2. Generate longer outputs

3. Incorporate other models/tools

[Zaharia et al., 2024]

Verifiers, code interpreters, search engines, ...



Today’s tutorial

1. Part 1: Generate multiple times
- Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
- Long chain-of-thought

1



Today’s tutorial

1. Part 1: Generate multiple times
- Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
- Long chain-of-thought



Recap: generation and decoding algorithms

Generator: Generates a sequence with a language model.

Input sequence —» — Output sequence

- Example: calling an LLM AP
- Decoding algorithms
- Temperature sampling

y ~ g(pg,X; ¢)



Unified view: Meta-Generation

Meta-generator: Test-time strategies for calling a generator multiple
times and incorporating external information’

e
Generator m Fvaluator - Select
The answer is 4 —_— -

- Example: call API multiple times, select the best sequence with a
separate model

TFrom Decoding to Meta-Generation: Inference-time Algorithms for
LLMs [Welleck et al., 2024] 14



Unified view: Meta-Generation

Meta-generator: Test-time strategies for calling a generator multiple
times and incorporating external information’

e
Generator m Fvaluator - Select
The answer is 4 —_— -

- Example: call API multiple times, select the best sequence with a
separate model

y ~ G(x,g; ®)

TFrom Decoding to Meta-Generation: Inference-time Algorithms for
LLMs [Welleck et al., 2024] 14



Meta-generators | outline

' ‘ I — =
Strategies Ej< %@ [Q@%%Dj

- Parallel Parallel Tree search

- Tree search — ’ ‘
- Refinement/self-correction [ J[ ]
Hybrid

- Chain (Part /[) Self-Correction




Meta-generators | outline

' _ I — 40
Strategies [D< %D} [D@%%EJ

- Parallel Parallel Tree search

- Tree search — --
- Refinement/self-correction [ ][ @ j

- Chain (Part I1) Self-Correction Hybrid

16



Meta-generators | parallel

output candidate 1 ]

/——> output candidate 2
|nput —» || Generator B —» | Aggregator | | —»

output candidate N

- Generate candidates:

O, Ly}~ 6(-Ix)

- Aggregate:



Parallel | Best-of-N?

H 2+2=5 | Reward Model | . u \ )
- EGeneratorj w M a (2+2=4

[ﬁ @ard McdelJ - u /

N J

5 Score outputs with
i reward model

argmax  v(y)
{y(1)7___7y(/\/)} ~—~
reward model

2[Stiennon et al., 2020, Nakano et al., 2022]



Parallel | Best-of-N

Input:
X: Letf() =283 = F + § + - + zar- Find 82, f(k).
LLEMMA 34B solution:
We have
oo oo 2008 1 2008 oo 1 2008 1 oo 1 2008 1 1
2 Sm=35=331=31> 5= 1
R=2 k=2 j=2 j=2 k=2 j=2 k=0 j=2 J
B 2008 1 B 2008 ( 1 1)
=10 F\i-1
(oYL (oY (D 1
1 2 2 3 2007 2008
_ 1
- 2008
| 2007
~ | 2008 |
y: Final Answer: The final answer is 2392

Example: solve a math problem

19



Best-of-N

What if we had a perfect reward model v*(y)?

MATH (Oracle Evaluator)
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Number of generations
Llama-3-88 ~ —— Llama-3-8B-Instruct —— Llama-3-70B-Instruct Gemma-2B  —— Gemma-78B
—— Pythia-70M  —— Pythia-160M Pythia-410M Pythia-1B Pythia-1.4B

Pythia-2.8B —— Pythia-6.9B Pythia-12B

[Brown et al., 2024]



Best-of-N | Reward Model

“Outcome reward model” v(y) — [0,1] = R(y):

[Observe that2+2=5.. ... the answer is 5.] —» | Reward Model |—» O
[Observe that2+2=14.. ... the answer is 4.J —» | Reward Model |—® 1

Train reward model with correct and incorrect examples.?

3Eg, [Cobbe et al, 2021]

21



Best-of-N | Reward Model

“Outcome reward model” v(y) — [0,1] = R(y):

[Observe that2+2=5.. ... the answer is 5.] —» | Reward Model |—» O
[Observe that2+2=14.. ... the answer is 4.J —» | Reward Model |—® 1

Train reward model with correct and incorrect examples.?

Terminology: Reward model ~ evaluator = critic ~ verifier ~ value & scoring model

3Eg, [Cobbe et al, 2021]

21



Best-of-N | Reward Model

“Process reward model (PRM)"

Process
: [ Step 1: ... ][ Step 2: ... ][Step 3:12+2= 5]—’ = [0,1]
5 : reward model

Solution-so-far

v(X,51,52,...,5t) = [0,1]

“[Uesato et al,, 2022, Lightman et al., 2024, Wang et al,, 2024a]

22



Best-of-N | Reward Model

78 A

76 A

74 A

72 A

70 A

68

% Problems Solved (Best-of-N)

66 -

64 ——— Process-Supervised RM
—— Outcome-Supervised RM
62 A —— Majority Voting

10! 102 103
N = number of solutions per problem

Lightman et al 2023 )



Best-of-N | Reward Model

Note: Preference reward model

[Hello, you are awesome ] > [Hello, you are #&@#*@#J

Train reward model with preference data.’

°E.g, [Stiennon et al, 2020]

24



Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{yM,...,yM}
~ arg max V(y) (1)
y
~ arg max R(Y) ()

y

25



Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{ym, ... ym}

~ arg max V(y) (1)
y

~ arg max R(Y) ()

y

(1) gets better as number of generations N increases!

25



Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{ym, ... y®}

~ arg max V(y) (1)
y

~ arg max R(Y) ()

y

(1) gets better as number of generations N increases!

(2) can suffer from imperfect reward model, aka “over-optimization”

25



Parallel | Best-of-N®

GSM (Learned Evaluator)

42

40

38

36 Over-optimization

Solve rate (%)

34

25 50 100 200 400 800 1600 3200
Number of generations

6plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 26



Voting

Voting aggregation:’

i[ First, we will factor the :
:( b o IAnswer:Z‘

polynomial ...

» i We'llsolve the problem in i )
Input —» || Generator [ three steps. First, . ]EA"SWE" 41~
[ Let's think step by step. IAnswer 2)/

Majority
Vote

Let x be ...

Reasoning path ,‘:.Answer,‘

’Also called self-consistency [Wang et al., 2023]

27



Weighted voting®

Weighted Voting:

First, we willfactor the |,
nswi
/’ polynomial ... H
» [ Wellsolve the problem in . 4]:[Reward Model -
Input —» || Generator [ thise siape First = ot b Weighted > | Answer: 2
H Vote 2
\ We will think step by step ... || Answer: 4 |'| Reward Model bt

[W Answer: 2 {( Reward Model / |
N ) : : J

: Score outputs with:
. reward model

N

argmaxz viy®) {y" =a},

=
=" reward model

8[Li et al., 2023]

28



Can outperform Best-of-N, e.g.?

MATH (Learned Reward)

50
45
40
35
30
251
20

4507 46353 4662 4653
45.26 50

—— Majority Voting
—— Weighted Voting
—— Best-of-N

Solve rate (%)

1 2 4 8 16 32 64 1282565121024
Number of generations

9[sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.
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hy (weig

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

i Z]I ar = arg maxz v(x,z,a)g(z, alx)
=1 a z

“Marginalize out paths z”

Notation:

- (x,z,0): (input, solution, answer)
- M: number of test examples

0Theorem 2, [Wu et al,, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang. 30



Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

T > 1 |af =argmax ) _v(x,z,a)g(z, alx)
i=1 a z

“Marginalize out paths z”

Takeaway 1: Will accuracy keep improving with more samples?

- No, it eventually converges to the accuracy shown above

10Theorem 2, [Wu et al, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

30



Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

T > 1 |af =argmax ) _v(x,z,a)g(z,alx)
i=1 a z

“Marginalize out paths z”

Takeaway 2: When is weighted voting better than voting?

- When v - g assigns more total mass to correct answers than g

10Theorem 2, [Wu et al, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

i Z]I ar = arg maxz v(x,z,a)g(z, alx)
=1 a z

“Marginalize out paths z”

Takeaway 3: How do we improve performance further?

- Improve the reward model v
- Improve the generator g (better model and/or better algorithm)

0Theorem 2, [Wu et al., 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
30



Improve the reward model:

(
! Average
f
" . — 2!
Problem Finetuned Verifier : 0. :
I
L
GenRM-CoT —{ ves |09 —(r
-
Verification CoT Yes 108!

Parallel generation in the reward model too™

(More later in this tutorial!!)

M[Zhang et al., 2024]

31



Meta-generation strategies | parallel

Parallel

- Explores output space by generating full sequences

- Large performance gains in practice

- Next: Can we better leverage intermediate evaluation?

32



Strategies

- Strategies

- Parallel
- Tree search
- Refinement

33



Tree search | basic idea

Call
Output sequence
%D 4@ —

34



Tree search | basic idea

Call
Output sequence
/@ 4@ - —

Design choices:

- States s

- Transitions s — s’

- Scores v(s)

- Strategy (breadth-first, depth-first, ...)

34



Tree search | example (REBASE)

2. Reward Balanced Search (Rebase)"?

[ Observethat2 +2 =5.. m
[ Observethat2 + 2 =4... Explore more

[We'll solve this as foltows..i.]

Explore based on
reward model scores

_ exp (v(si)/7)
explore; = Round (BUdgethexp(v(s,-)/ﬂ> ; (3)

2[wu et al,, 2024] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.

35



Tree search | example

é\o output candidate N

Run tree search to get candidates for aggregation (e.g., voting).

(1 Generator
input output candldate 2
p Aggregator output
\.

- Key idea: Leverages scores on intermediate states

- Backtracking
- Exploration

36



Tree search | examples™

Llemma-7B

80 e a

754 —e— Sampling W.M.
T Sampling BoN
£ 701 —— REB,f\)SEg\NM
g M.
c 65 1 ~ REBASE BoN
o
° 60 "N
=
© 551
)
[7p]
@ 50

45

4 16 64 256 1024
Infer. FLOPs per question (x101?)

B[wu et al,, 2024] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 37



Tree search | examples

Theorem
r subset : rcs-sct-rct

|

Proof State

@ : Type u_l
rst: Seta

rcs-sc

- Next step

(“tactic")

Formal theorem proving [Polu and Sutskever, 2020]

38



Tree search | examples

A

(-0.109) apply Nat.le_add_right

type-checked candidates: /(—0.173) exact Nat.le_add_right _ _
(-0.066) rintro rfl
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Best-first search in formal theorem proving

T

A%

39



Tree search | examples

’?

Starting State

. | juzigr Success

Best-first search in web agents [Koh et al, 2024]

40



Meta-generation strategies | Tree search

Tree-search

- Can backtrack and explore using intermediate scores

- Decomposition into states
- Good reward signal

41



Strategies

- Strategies
- Parallel
- Tree search
- Refinement

42



Refinement / self-correction

;’ Bad generation path‘} /Better generation path‘}

[ Observethat2 +2 =5... }-’ Corrector —’ [ Observethat2 +2 =4.. j

Improve a generation

Repeat:

-y~ g(x, )

43



Refinement / self-correction

Observe that 2 + 2=5..

2+2 5|swrong
ln-nat Feedback -
Generator

Bad generation Better generation

Improve a generation using feedback

Repeat:

-y~ g(x, y@, F(y(D))

43



Refinement / self-correction

2 +2=5iswrong

Feedback > Corrector

Better generation

Observethat2+2=5.. |

Initial
Generator
Bad generation o :
: Quality is important

Improve a generation using feedback

43



Meta-generators | refinement

In practice, the is crucial:

- Extrinsic: external information at inference time

- Intrinsic: no external information at inference time

I



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

error: precondition not satisfied
==> /playground/src/main.rs:23:5
|

9 | substring.len() > o,
| - failed precondition

23 | lemma_step_subrange(tail_a, string.skip(1));

error: aborting due to 1 previous error

20 if tail_a.len() > 0 {
21 lenma_step_subrange(tail_a, string.skip(1));

2 ¥

verification results:: 1 verified, 1 errors
Feedback
{ Corrector
Rust Verifier (Vems)

Feedback: external program verifier™

Buggy Rust code

Initial
Generator

14 [Aggarwal et al,, 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck. i



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

HumanEval-Verus

—
3 030
N—"
)
+—
©
—
g 0.25
o
n
Parallel
Refinement
0.20

64 128 192 256 320 384 448 512

Number of generations
AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

45



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

« Verifiers [aggarwal et al, 2024]
- Code interpreters [Chen et al, 2024]
- Retrievers [asai et al, 2024]

- Tools + agent environment™

Intuition: adds new information, can detect and localize errors

M https://x.com/gneubig/status/1866172948991615177

45


https://x.com/gneubig/status/1866172948991615177

Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

[ 2+2=5iswrong J

Observe that2 + 2 =5...

Generator Feedback

7

Corrector

Re-prompt a single LLM, e.g. [Madaan et al., 2023]

46



Meta-generators | refinement | intrinsic

- Easy to evaluate tasks: positive [wang et al, 2024b]
- E.g, missing info [Asai et al, 2024]

- Mathematical reasoning: mixed®™

BEg, [Huang et al,, 2024] Large Language Models Cannot Self-Correct Reasoning Yet

46



Meta-generators | refinement | intrinsic

GSMS8k (GPT 3.5)

w I 133 =3 ~
S S S S =)

Percentage (%)

N
S

10 8.8% 7.6% 8.9%
0
No Correct Incorrect Incorrect
Change — Incorrect — Correct — Incorrect

Takeaway: feedback is too noisy From [Huang et al., 2024]

46



Meta-generators | refinement

Generate “TAYLORSWIFT”
- Generator:
- p(character)
- Feedback:
- Incorrect characters
- Corrector:
- Regenerate incorrect

“ GERCEREENEE

—— Refinement (Feedback noise 0.0)
/ Refinement (Feedback noise 0.01)
ST ATe )0 (" o [w( i) v 7] Refinement (Feedback noise 0.4)
20008000006 N Best-of-N (Feedback noise 0.0)
-~ Optimal

VY WA WA A A N i A, WAL NN ot

Correct Characters in Best Sequence

0 50 250 200

100 150 20
Total Sequence Generations

47



Meta-generators | refinement / self-correction

Refinement / self-correction

- Extrinsic

- Positive results for environments that detect or localize errors
- Intrinsic

- Mixed results, depends on difficulty of verification

48



Meta-generators | outline

- Strategies

- Parallel
- Tree search
- Refinement

- Inference scaling laws

49



Inference scaling laws [Wu et al., 2024]

Compute is a function of model size and number of generated tokens

Model size Number of tokens Inference strategy
G —
« C—— =x=J
G )
——— > o=E
.=

Cost

50



Inference scaling laws [Wu et al., 2024]

We can choose to increase model size or number of tokens

Model size Number of tokens Inference strategy
|
* D
.
——
D
@ *

Equal cost

51



Inference scaling laws [Wu et al., 2024]

Fix strategy

Error

Model size 3

Compute optimal
frontier

- Scaling law

>
Compute budget

52



Inference scaling laws [Wu et al., 2024]

701 —e— 410M
o% 1.4B
= 601 —— 2.8B

410M —— 6.9B

(2 501 COmpute-optimaI: —e— 12B
o :
5 407 !
= :
() 1
] 1
0 30 1 2.8B

I Compute-optimal
@ :

i 128 .

! Compute-optimal !

2 8 32 128 512 2048
Inference FLOPs per question (x10%1)

Using a smaller model and generating more is often best [wu et al, 2024].



Inference scaling laws

Designing better strategies

- Example: design a better tree search [Wu et al., 2024]

- Example: select inference strategy based on problem
difficulty [Snell et al., 2024]

54



Inference scaling laws | recap

- When allocated optimally, performance improves with compute
- Best model size and strategy varies with the budget
- Sometimes smaller models are better!

55



Meta-generation | recap

- Strategies for generating multiple sequences
- Parallel, tree search, refinement

- Choose methods based on task performance and cost

56



Today'’s lecture

1. Part 1: Generating multiple sequences

2. Part 2: Generating a single long sequence
- Long chain-of-thought

57



Meta-generators | chain

Ve I\
P Intermediate Intermediate
input  |—»|| Model |-» —| Model |—» > .| -
[ } { output J [ J { output }
_ J

Compose generators:

V1~ gi(x)
Yo ~ G2(X, 1)
y3 ~ g3(X, y2)

> X

58



Meta-generators | chain

Simple example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->[thought|, answer
Model Output
A: The answer is 27. x )

A simple decomposition:

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. «/

- Generate a thought, z ~ g(:|x)

- Generate an answer, a ~ g(:|x, z)

59



Meta-generators | chain

Simple example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->[thought|, answer
Model Output
A: The answer is 27. x )

Increases expressivity™

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. «/

- Variable output length, analogous to a writeable tape
- Idea: train a model that searches on its own in the thought!

BEg, [Feng et al, 2023, Merrill and Sabharwal, 2024, Nowak et al., 2024]

59



Training a model to search: Basic idea

- Train a model to generate a “thought” prior to a final output

po( Y+ 2 )

“output” “thought”

- At inference time, just sample a thought+output

- In principle, the model can learn to try alternatives, perform
refinement, backtrack within the thought

60



Training for long chain-of-thought [DeepSeek-Al et al., 2025]

- Approach 1: reinforcement learning

- Policy: given a math problem x, generate a thought + answer
- Reward: is the answer correct

61



Training for long chain-of-t t [DeepSeek-Al et al., 202

DeepSeek-R1-Zero AIME accuracy during training DeepSeek-R1-Zero average length per response during training

A z
" A NN
W

[ 2000 4000 6000 8000
o 2000 4000 6000 8000 Steps

Accuracy improves during training Response length increases to > 10,000

62



Training for long chain-of-thought [DeepSeek-Al et al., 2025]

Question: If a > 1, then the sum of the real solutions of m = x is equal to
Response: <think>

To solve the equation va — Va +x = x, let’s start by squaring both - - -

( a—\/m)2=x2 = a—+Va+x=2x2

Rearrange to isolate the inner square root term:

(@-x*)?=a+x = a®-2ax>+(x?)? =a+x = x*-2ax? —x+(a®>-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va—Varzox

First, let’s square both sides:
a-Vat+tx=x* = Va+tx=a-x
Next, I could square both sides again, treating the equation: - - -

2

Example response

63



ht patterns credits: weihua Du

. Uncertainty

- Wait... [ Hold on...

- Wait-actually, does this formula apply here?

. Branching, backtracking, retrying

- Alternatively, generating functions could model this problem...
- Revisiting...

- Wait, I'm overthinking. Let’s try again...

. Verification

- Let’s check if we made an error. We should verify...

- This is a contradiction, so we must have made a mistake.
- Let’s test this with...

. Key Points

- Key takeaway... | It's worth noting...

. Clarification
- In other words... | To clarify...

. Synthesis
- Ultimately... | Putting it all together...

64



CoT Encyclopedia [Lee et al.

3. Criteria Compression via

1. Classification Criteria Identification 2. Classification Criteria Embedding i @i

N criteria k criteria (k << n)
Analytical Perspective: Top-down vs Bottom-up e Analytical T
rapective Perspective 3
Idea Development: Multiple vs Single pspeianaly o Tdea Development *
<
g g
Reasoning Type: Inductive vs Deductive Reasoning Type Reasoning Type
Verification Focus i "
Focua: Hypothesird: o dri Verification Focus
PCA1 PCA1
4. Rubric Generation 5. Pattern Analysis Report Generation Use cases
Analytical Bottom-up: Clearly Bottom-up A Reasoning pattern X Optimal reasoning
Perspective Approach. Strongly inclined to analysis pattern control
Cmriy e demonstrates multiple
Idea Development ... TR EaOIOuERG —— TypeA @
S @ ¢ ays 2
Reasoning Type  APPToach: Demonstrates a abilty he given response demonstrates AN
giIveel] R e strong deductive reasoning.... * * TypeB Pttn. A Pitn. B
structure .. c
Verification Focus g TypeC ‘Use Pattern A to

solve the problem ..

The COT ENCYCLOPEDIA: Analyzing, Predicting,
and Controlling how a Reasoning Model will Think

Seongyun Lee! ™" Seungone Kim**  Minju Seo'  Yongrae Jo'
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he length: L1 [Aggarwal and Welleck,

- Train model with
reinforcement learning to
adhere to length constraints

- E.g. “use up to 1000 tokens”
provided in the prompt

- Reward: correctness and
length constraint penalty

L1: Controlling How Long A Reasoning Model Thinks
With Reinforcement Learning

Pranjal Aggarwal Sean Welleck

Carnegie Mellon University Carnegie Mellon University
60%
L1-Max o o
50% A
@
O @

L1-Exact P

40% \‘,//
<

Uncontrollable
reasoning models

Pass Rate

w
S
X

S1: Controllable, but

20%
worse performance

512 1K 2K 4K 8K
Tokens Used

66



Controlling the length: L1 [Aggarwal and Welleck, 2025]

il & @ 11-qwen-1.5b-max 2 Eject A

If x is even, x + 5 is odd. @ Appearance G Clear Al @ Duplicate

You

Prove that if x is even, x + 5 is odd. Think for 500 tokens.

Assistant = 11-qwen-1.5b-max

**

Okay, so | need to prove that if x is even, then x + 5 is odd. Hmm, let me think about this step by
step.

First, | remember that an even number is any integer that can be written as 2k, where k is an integer.

Bay F s mE e = e e s e R

Type a message and press Enter to send ...

Z

Demo: Using L1 on a laptop in LM studio




Long chain-of-thought | sequential vs. parallel

- Sequential: long
chain-of-thought

- Parallel: majority voting
(multiple long COTs)

70.0%
65.0%
60.0%
55.0%
50.0%
45.0%
40.0%
35.0%

Macro Average
Our Methods:

—e— L1 - Max (512 tokens)
—o— L1 - Max (1024 tokens)

._-767 L1 - Max (2048 tokens)
L1 - Max (3600 tokens)
g

Baselines:
7 .
/ —— Agentica-4K

—=— Agentica-24K
»\//’. —— Qwen-2.5-1.5B-Math

—— DeepSeek-R1-1.5B

5121K 2K 4K 8K16B2K
Tokens Used

[Aggarwal and Welleck, 2025]
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Reasoning models as evaluators in Best-of-N [Kim et al., 2025]

Branch the output into steps Evaluate each of the steps as well as the Merge the step-wise judgments
while retaining the original result whole output based on its correctness and outcome judgments
Reasoning 3
Yi outcome Ci + Ji
. evaluator
< original outcome
output CoT & judgment
{zi,yi} > | My )
i Reasoning el b
Yiz Ci2 Ji2 ;
~ . process : ! 7 fial
. evaluator 2 score
YiN CiN Jin
stops step-wise
i CoTs & judgments
N
Qeals L. . . .
ling E i Compute with R g
Models as Process Evaluators
Seungone Kim'*  Ian Wu®*  Jinu Lee®*  Xiang Yue!
Seongyun Lee'  Mingyeong Moon?  Kiril Gashteoyski®® Carolin Lawrence’
Julia Hockenmaier’ ~ Graham Neubig! ~Sean Welleck
'CMU  ZIndependent Researcher  SUIUC  “KAIST Al
SNEC Laboratories Europe 7Ss.Cyril and Methodius University of Skopje
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Reasoning models as evaluators in Best-of-N [Kim et al., 2025]

Evaluator Performance

72.5:

70.0:

65.0:

62.5-

60.0-

57.5

55.0:

48

46

Generator Performance

4096 . . 32768 8192 . 16:284 32768
Evaluation-Time Compute Evaluation-Time Compute

Scaling Evaluation-time C with R

Models as Process Evaluators

Seungone Kim'* Tan Wu?* Jinu Lee™  Xiang Yue!
Seongyun Lee!  Mingyeong Moon?  Kiril Gashteovski®® _Carolin Lawrence’
Julia Hockenmaier’ ~ Graham Neubig! ~Sean Welleck

'CMU  “Independent Researcher  SUIUC  “KAIST Al
SNEC Laboratories Europe 7S5.Cyril and Methodius University of Skopje
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Part 2 recap

- Train a model to generate a long sequence, then use a simple
inference algorithm

- Internally can perform backtracking, self-correction, etc.
- Emerging area of research!
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Today's tutorial | recap

1. Test-time inference strategies take a trained model and improve
performance by:
- Generating tokens according to a strategy
- Incorporate external information

- Reward models
- Environment feedback
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Today's tutorial | recap

1. Test-time inference strategies take a trained model and improve
performance by:
- Generating tokens according to a strategy
- Incorporate external information
- Reward models
- Environment feedback
2. Two complementary meta-generation strategies
- Call a generator to generate a thought prior to an answer
- Long chain-of-thought
- Call a generator multiple times in a structured way
- parallel, tree search, refinement
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Additional resources

Published in Transactions on Machine Learning Rescarch (11/2024) Neuris 2024 Tutorial
leurips utorial:
Beyond Decoding: Meta-Generation Algorithms for
From Decoding to Meta-Generation: Large Language Models
I time A for Large L Models

T9H¢3
9@&@

arnegie Mellon Uriversity  ZUniversity ‘o whil ot EleutherAl  “Meta Al

NeurlPS 2024 LLM Inference Tutorial:
s https://cmu-13.github.io/neurips2024-
inference-tutorial/

TMLR Survey [Welleck et al., 2024]
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Additional resources

Home About CallforPapers Speakers Schedule Organizers

THE FIRST WORKSHOP ON TEST-TIME SCALING AND
REASONING MODELS
(SCALR @ COLM 2025)

October 10, 2025, Montreal, Canada

About The \X/orkshop i
© Palais des Congrés.

The p focuses on challenges PP in scaling and f  Montreal, Canada

large language mede\sauesnme o ue!og ow in size an d(apab\ly understanding how to

effectively scale their performance and enhance theis ing abilities during inference has become increasingly () October 10, 2025

e

1st Workshop on Test-Time Scaling and Reasoning Models at COLM 2025
https://scalr-workshop.github.io/



https://scalr-workshop.github.io/

Sean Welleck
Carnegie Mellon University
Learning, Language, and Logic (L3) Lab
www.wellecks.com
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Additional results

52 52
@ 50 e 50
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Additional results

Impact of Pattern-Based Instructions

GPQA-Diamond MMLU-Redux MATH-500 XsTest wild guard
] 1 95.5 95.4
=1 92.3 Te1.1 91, 1“'0 92.9
= 88.989.289.790.1 9L 2 89.1  89.6
g7 Bl & 85.4
. 810 80.7 2
gl 770721 o2 78.278.678.879.3 " & |
£ 78.4 3
g mi727 o1
§ o 5
w
= Noti i (random) I-d; ) ptimal-q
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Additional results

(a) Question vs Pattern Similarity

R2 = 0.4045
p-value = 2.76e-201

o o
© ©
=] 5

Pattern - Pattern Similarity
=}
[+
4

—— y=027x+0.73

0.3 0.4 0.5 0.6 0.7 0.8
Question - Question Similarity
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