Tutorial: Test-Time Scaling for
Mathematical Reasoning

Sean Welleck
May 28, 2025

Carnegie Mellon University

Today’s talk

Algorithms for generating outputs with a
language model

Today’s talk

Algorithms for generating outputs with a
language model

Why? Use test-time compute to improve performance

Language models

Al achieves silver-medal standard solving
International Mathematical Olympiad
problems

Solving olympiad problems

Writing code

Tasks framed as generating sequences: many other applications

Approach 1: scale pretraining compute

[2020-] Scale training-time compute: larger model, larger dataset

o 5
8
- 4
4
3
F 3
L = (Cmin/2.3 - 108)70:050
2
10-° 1077 1073 1073 1071 10!

Compute

Scaling Laws for Neural Language Models [Kaplan et al., 2020]

Approach 2: scale test-time compute

[Now] Test-time scaling: increase compute at generation time

o1 AIME accuracy
at test time

>
Q
©
R
=S
Q
Q
©
®
7]
7]
[}
Q

test-time compute (log scale)

Test-time compute vs. accuracy ([OpenAl, 2024])

Test-time scaling strategies

1. Generate multiple times

2 +2=5.. . -
Generator < m Evaluator [Select
The answer is 4 —_— e

Test-time scaling strategies

1. Generate multiple times

MATH Benchmark
55

50
45
40
35
30
25
20

45,07 4653 4667 4653

% Solved

Inference strategy 1
Inference strategy 2

Inference strategy 3

1 2 4 8 16 32 64 1282565121024
Number of generated solutions

Test-time scaling strategies

1. Generate multiple times

2. Generate longer outputs

input -> answer input -> (thought|, answer

Model Output
A: The answer is 27. x)

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

Test-time scaling strategies

1. Generate multiple times
2. Generate longer outputs

AMC
80%
70% OA,. .
60% O @
o o
g 50% ./’ *
w40% @
3 X
o 30%
20% /,,(,
10% *

0%
512 1K 2K 4K

Number of
Generated Tokens

Test-time scaling strategies

RO+ & @ 11-qwen-1.5b-max v 2 Eject A

If x is even, x + 5 is odd. @ Appearance G Clear Al @ Duplicate

You

Prove that if x is even, x + 5 is odd. Think for 500 tokens.

Assistant = 11-qwen-1.5b-max

**

Okay, so | need to prove that if x is even, then x + 5 is odd. Hmm, let me think about this step by
step.

First, | remember that an even number is any integer that can be written as 2k, where k is an integer.

Bay F s mE e = e e s e R

Type a message and press Enter to send ...

Z

Demo: L1 reasoning model [Aggarwal and Welleck, 2025] on a laptop

Test-time scaling strategies

1. Generate multiple times
2. Generate longer outputs

3. Incorporate other models/tools

[Zaharia et al., 2024]

Verifiers, code interpreters, search engines, ...

Today’s tutorial

1. Part 1: Generate multiple times
- Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
- Long chain-of-thought

1

Today’s tutorial

1. Part 1: Generate multiple times
- Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
- Long chain-of-thought

Recap: generation and decoding algorithms

Generator: Generates a sequence with a language model.

Input sequence —» — Output sequence

- Example: calling an LLM AP
- Decoding algorithms
- Temperature sampling

y ~ g(pg,X; ¢)

Unified view: Meta-Generation

Meta-generator: Test-time strategies for calling a generator multiple
times and incorporating external information’

e
Generator m Fvaluator - Select
The answer is 4 —_— -

- Example: call API multiple times, select the best sequence with a
separate model

TFrom Decoding to Meta-Generation: Inference-time Algorithms for
LLMs [Welleck et al., 2024] 14

Unified view: Meta-Generation

Meta-generator: Test-time strategies for calling a generator multiple
times and incorporating external information’

e
Generator m Fvaluator - Select
The answer is 4 —_— -

- Example: call API multiple times, select the best sequence with a
separate model

y ~ G(x,g; ®)

TFrom Decoding to Meta-Generation: Inference-time Algorithms for
LLMs [Welleck et al., 2024] 14

Meta-generators | outline

' ‘ I — =
Strategies Ej< %@ [Q@%%Dj

- Parallel Parallel Tree search

- Tree search — ’ ‘
- Refinement/self-correction [J[]
Hybrid

- Chain (Part /[) Self-Correction

Meta-generators | outline

' _ I — 40
Strategies [D< %D} [D@%%EJ

- Parallel Parallel Tree search

- Tree search — --
- Refinement/self-correction [][@ j

- Chain (Part I1) Self-Correction Hybrid

16

Meta-generators | parallel

output candidate 1]

/——> output candidate 2
|nput —» || Generator B —» | Aggregator | | —»

output candidate N

- Generate candidates:

O, Ly}~ 6(-Ix)

- Aggregate:

Parallel | Best-of-N?

H 2+2=5 | Reward Model | . u \)
- EGeneratorj w M a (2+2=4

[ﬁ @ard McdelJ - u /

N J

5 Score outputs with
i reward model

argmax v(y)
{y(1)7___7y(/\/)} ~—~
reward model

2[Stiennon et al., 2020, Nakano et al., 2022]

Parallel | Best-of-N

Input:
X: Letf() =283 = F + § + - + zar- Find 82, f(k).
LLEMMA 34B solution:
We have
oo oo 2008 1 2008 oo 1 2008 1 oo 1 2008 1 1
2 Sm=35=331=31> 5= 1
R=2 k=2 j=2 j=2 k=2 j=2 k=0 j=2 J
B 2008 1 B 2008 (1 1)
=10 F\i-1
(oYL (oY (D 1
1 2 2 3 2007 2008
_ 1
- 2008
| 2007
~ | 2008 |
y: Final Answer: The final answer is 2392

Example: solve a math problem

19

Best-of-N

What if we had a perfect reward model v*(y)?

MATH (Oracle Evaluator)

1.0
+d
O
Q os
—
—
(@]
© 0.6
—
+—
0
(O 0.4
<2
+—
<C 02
0.0 10° 10t 102 10° 104
Number of generations
Llama-3-88 ~ —— Llama-3-8B-Instruct —— Llama-3-70B-Instruct Gemma-2B —— Gemma-78B
—— Pythia-70M —— Pythia-160M Pythia-410M Pythia-1B Pythia-1.4B

Pythia-2.8B —— Pythia-6.9B Pythia-12B

[Brown et al., 2024]

Best-of-N | Reward Model

“Outcome reward model” v(y) — [0,1] = R(y):

[Observe that2+2=5.. ... the answer is 5.] —» | Reward Model |—» O
[Observe that2+2=14.. ... the answer is 4.J —» | Reward Model |—® 1

Train reward model with correct and incorrect examples.?

3Eg, [Cobbe et al, 2021]

21

Best-of-N | Reward Model

“Outcome reward model” v(y) — [0,1] = R(y):

[Observe that2+2=5.. ... the answer is 5.] —» | Reward Model |—» O
[Observe that2+2=14.. ... the answer is 4.J —» | Reward Model |—® 1

Train reward model with correct and incorrect examples.?

Terminology: Reward model ~ evaluator = critic ~ verifier ~ value & scoring model

3Eg, [Cobbe et al, 2021]

21

Best-of-N | Reward Model

“Process reward model (PRM)"

Process
: [Step 1: ...][Step 2: ...][Step 3:12+2= 5]—’ = [0,1]
5 : reward model

Solution-so-far

v(X,51,52,...,5t) = [0,1]

“[Uesato et al,, 2022, Lightman et al., 2024, Wang et al,, 2024a]

22

Best-of-N | Reward Model

78 A

76 A

74 A

72 A

70 A

68

% Problems Solved (Best-of-N)

66 -

64 ——— Process-Supervised RM
—— Outcome-Supervised RM
62 A —— Majority Voting

10! 102 103
N = number of solutions per problem

Lightman et al 2023)

Best-of-N | Reward Model

Note: Preference reward model

[Hello, you are awesome] > [Hello, you are #&@#*@#J

Train reward model with preference data.’

°E.g, [Stiennon et al, 2020]

24

Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{yM,...,yM}
~ arg max V(y) (1)
y
~ arg max R(Y) ()

y

25

Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{ym, ... ym}

~ arg max V(y) (1)
y

~ arg max R(Y) ()

y

(1) gets better as number of generations N increases!

25

Best-of-N

Why Best-of-N?

- Approximates maximum (true) reward:

Best-of-N = argmax v(y)

ye{ym, ... y®}

~ arg max V(y) (1)
y

~ arg max R(Y) ()

y

(1) gets better as number of generations N increases!

(2) can suffer from imperfect reward model, aka “over-optimization”

25

Parallel | Best-of-N®

GSM (Learned Evaluator)

42

40

38

36 Over-optimization

Solve rate (%)

34

25 50 100 200 400 800 1600 3200
Number of generations

6plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 26

Voting

Voting aggregation:’

i[First, we will factor the :
:(b o IAnswer:Z‘

polynomial ...

» i We'llsolve the problem in i)
Input —» || Generator [three steps. First, .]EA"SWE" 41~
[Let's think step by step. IAnswer 2)/

Majority
Vote

Let x be ...

Reasoning path ,‘:.Answer,‘

’Also called self-consistency [Wang et al., 2023]

27

Weighted voting®

Weighted Voting:

First, we willfactor the |,
nswi
/’ polynomial ... H
» [Wellsolve the problem in . 4]:[Reward Model -
Input —» || Generator [thise siape First = ot b Weighted > | Answer: 2
H Vote 2
\ We will think step by step ... || Answer: 4 |'| Reward Model bt

[W Answer: 2 {(Reward Model / |
N) : : J

: Score outputs with:
. reward model

N

argmaxz viy®) {y" =a},

=
=" reward model

8[Li et al., 2023]

28

Can outperform Best-of-N, e.g.?

MATH (Learned Reward)

50
45
40
35
30
251
20

4507 46353 4662 4653
45.26 50

—— Majority Voting
—— Weighted Voting
—— Best-of-N

Solve rate (%)

1 2 4 8 16 32 64 1282565121024
Number of generations

9[sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.

29

hy (weig

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

i Z]I ar = arg maxz v(x,z,a)g(z, alx)
=1 a z

“Marginalize out paths z”

Notation:

- (x,z,0): (input, solution, answer)
- M: number of test examples

0Theorem 2, [Wu et al,, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang. 30

Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

T > 1 |af =argmax) _v(x,z,a)g(z, alx)
i=1 a z

“Marginalize out paths z”

Takeaway 1: Will accuracy keep improving with more samples?

- No, it eventually converges to the accuracy shown above

10Theorem 2, [Wu et al, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

30

Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

T > 1 |af =argmax) _v(x,z,a)g(z,alx)
i=1 a z

“Marginalize out paths z”

Takeaway 2: When is weighted voting better than voting?

- When v - g assigns more total mass to correct answers than g

10Theorem 2, [Wu et al, 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

30

Why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges
to..10

M

1

i Z]I ar = arg maxz v(x,z,a)g(z, alx)
=1 a z

“Marginalize out paths z”

Takeaway 3: How do we improve performance further?

- Improve the reward model v
- Improve the generator g (better model and/or better algorithm)

0Theorem 2, [Wu et al., 2024] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
30

Improve the reward model:

(
! Average
f
" . — 2!
Problem Finetuned Verifier : 0. :
I
L
GenRM-CoT —{ ves |09 —(r
-
Verification CoT Yes 108!

Parallel generation in the reward model too™

(More later in this tutorial!!)

M[Zhang et al., 2024]

31

Meta-generation strategies | parallel

Parallel

- Explores output space by generating full sequences

- Large performance gains in practice

- Next: Can we better leverage intermediate evaluation?

32

Strategies

- Strategies

- Parallel
- Tree search
- Refinement

33

Tree search | basic idea

Call
Output sequence
%D 4@ —

34

Tree search | basic idea

Call
Output sequence
/@ 4@ - —

Design choices:

- States s

- Transitions s — s’

- Scores v(s)

- Strategy (breadth-first, depth-first, ...)

34

Tree search | example (REBASE)

2. Reward Balanced Search (Rebase)"?

[Observethat2 +2 =5.. m
[Observethat2 + 2 =4... Explore more

[We'll solve this as foltows..i.]

Explore based on
reward model scores

_ exp (v(si)/7)
explore; = Round (BUdgethexp(v(s,-)/ﬂ> ; (3)

2[wu et al,, 2024] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.

35

Tree search | example

é\o output candidate N

Run tree search to get candidates for aggregation (e.g., voting).

(1 Generator
input output candldate 2
p Aggregator output
\.

- Key idea: Leverages scores on intermediate states

- Backtracking
- Exploration

36

Tree search | examples™

Llemma-7B

80 e a

754 —e— Sampling W.M.
T Sampling BoN
£ 701 —— REB,f\)SEg\NM
g M.
c 65 1 ~ REBASE BoN
o
° 60 "N
=
© 551
)
[7p]
@ 50

45

4 16 64 256 1024
Infer. FLOPs per question (x101?)

B[wu et al,, 2024] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 37

Tree search | examples

Theorem
r subset : rcs-sct-rct

|

Proof State

@ : Type u_l
rst: Seta

rcs-sc

- Next step

(“tactic")

Formal theorem proving [Polu and Sutskever, 2020]

38

Tree search | examples

A

(-0.109) apply Nat.le_add_right

type-checked candidates: /(—0.173) exact Nat.le_add_right _ _
(-0.066) rintro rfl
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Best-first search in formal theorem proving

T

A%

39

Tree search | examples

’?

Starting State

. | juzigr Success

Best-first search in web agents [Koh et al, 2024]

40

Meta-generation strategies | Tree search

Tree-search

- Can backtrack and explore using intermediate scores

- Decomposition into states
- Good reward signal

41

Strategies

- Strategies
- Parallel
- Tree search
- Refinement

42

Refinement / self-correction

;’ Bad generation path‘} /Better generation path‘}

[Observethat2 +2 =5... }-’ Corrector —’ [Observethat2 +2 =4.. j

Improve a generation

Repeat:

-y~ g(x,)

43

Refinement / self-correction

Observe that 2 + 2=5..

2+2 5|swrong
ln-nat Feedback -
Generator

Bad generation Better generation

Improve a generation using feedback

Repeat:

-y~ g(x, y@, F(y(D))

43

Refinement / self-correction

2 +2=5iswrong

Feedback > Corrector

Better generation

Observethat2+2=5.. |

Initial
Generator
Bad generation o :
: Quality is important

Improve a generation using feedback

43

Meta-generators | refinement

In practice, the is crucial:

- Extrinsic: external information at inference time

- Intrinsic: no external information at inference time

I

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

error: precondition not satisfied
==> /playground/src/main.rs:23:5
|

9 | substring.len() > o,
| - failed precondition

23 | lemma_step_subrange(tail_a, string.skip(1));

error: aborting due to 1 previous error

20 if tail_a.len() > 0 {
21 lenma_step_subrange(tail_a, string.skip(1));

2 ¥

verification results:: 1 verified, 1 errors
Feedback
{ Corrector
Rust Verifier (Vems)

Feedback: external program verifier™

Buggy Rust code

Initial
Generator

14 [Aggarwal et al,, 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck. i

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

HumanEval-Verus

—
3 030
N—"
)
+—
©
—
g 0.25
o
n
Parallel
Refinement
0.20

64 128 192 256 320 384 448 512

Number of generations
AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

45

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

« Verifiers [aggarwal et al, 2024]
- Code interpreters [Chen et al, 2024]
- Retrievers [asai et al, 2024]

- Tools + agent environment™

Intuition: adds new information, can detect and localize errors

M https://x.com/gneubig/status/1866172948991615177

45

https://x.com/gneubig/status/1866172948991615177

Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

[2+2=5iswrong J

Observe that2 + 2 =5...

Generator Feedback

7

Corrector

Re-prompt a single LLM, e.g. [Madaan et al., 2023]

46

Meta-generators | refinement | intrinsic

- Easy to evaluate tasks: positive [wang et al, 2024b]
- E.g, missing info [Asai et al, 2024]

- Mathematical reasoning: mixed®™

BEg, [Huang et al,, 2024] Large Language Models Cannot Self-Correct Reasoning Yet

46

Meta-generators | refinement | intrinsic

GSMS8k (GPT 3.5)

w I 133 =3 ~
S S S S =)

Percentage (%)

N
S

10 8.8% 7.6% 8.9%
0
No Correct Incorrect Incorrect
Change — Incorrect — Correct — Incorrect

Takeaway: feedback is too noisy From [Huang et al., 2024]

46

Meta-generators | refinement

Generate “TAYLORSWIFT”
- Generator:
- p(character)
- Feedback:
- Incorrect characters
- Corrector:
- Regenerate incorrect

“ GERCEREENEE

—— Refinement (Feedback noise 0.0)
/ Refinement (Feedback noise 0.01)
ST ATe)0 (" o [w(i) v 7] Refinement (Feedback noise 0.4)
20008000006 N Best-of-N (Feedback noise 0.0)
-~ Optimal

VY WA WA A A N i A, WAL NN ot

Correct Characters in Best Sequence

0 50 250 200

100 150 20
Total Sequence Generations

47

Meta-generators | refinement / self-correction

Refinement / self-correction

- Extrinsic

- Positive results for environments that detect or localize errors
- Intrinsic

- Mixed results, depends on difficulty of verification

48

Meta-generators | outline

- Strategies

- Parallel
- Tree search
- Refinement

- Inference scaling laws

49

Inference scaling laws [Wu et al., 2024]

Compute is a function of model size and number of generated tokens

Model size Number of tokens Inference strategy
G —
« C—— =x=J
G)
——— > o=E
.=

Cost

50

Inference scaling laws [Wu et al., 2024]

We can choose to increase model size or number of tokens

Model size Number of tokens Inference strategy
|
* D
.
——
D
@ *

Equal cost

51

Inference scaling laws [Wu et al., 2024]

Fix strategy

Error

Model size 3

Compute optimal
frontier

- Scaling law

>
Compute budget

52

Inference scaling laws [Wu et al., 2024]

701 —e— 410M
o% 1.4B
= 601 —— 2.8B

410M —— 6.9B

(2 501 COmpute-optimaI: —e— 12B
o :
5 407 !
= :
() 1
] 1
0 30 1 2.8B

I Compute-optimal
@ :

i 128 .

! Compute-optimal !

2 8 32 128 512 2048
Inference FLOPs per question (x10%1)

Using a smaller model and generating more is often best [wu et al, 2024].

Inference scaling laws

Designing better strategies

- Example: design a better tree search [Wu et al., 2024]

- Example: select inference strategy based on problem
difficulty [Snell et al., 2024]

54

Inference scaling laws | recap

- When allocated optimally, performance improves with compute
- Best model size and strategy varies with the budget
- Sometimes smaller models are better!

55

Meta-generation | recap

- Strategies for generating multiple sequences
- Parallel, tree search, refinement

- Choose methods based on task performance and cost

56

Today'’s lecture

1. Part 1: Generating multiple sequences

2. Part 2: Generating a single long sequence
- Long chain-of-thought

57

Meta-generators | chain

Ve I\
P Intermediate Intermediate
input |—»|| Model |-» —| Model |—» > .| -
[} { output J [J { output }
_ J

Compose generators:

V1~ gi(x)
Yo ~ G2(X, 1)
y3 ~ g3(X, y2)

> X

58

Meta-generators | chain

Simple example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->[thought|, answer
Model Output
A: The answer is 27. x)

A simple decomposition:

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. «/

- Generate a thought, z ~ g(:|x)

- Generate an answer, a ~ g(:|x, z)

59

Meta-generators | chain

Simple example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->[thought|, answer
Model Output
A: The answer is 27. x)

Increases expressivity™

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. «/

- Variable output length, analogous to a writeable tape
- Idea: train a model that searches on its own in the thought!

BEg, [Feng et al, 2023, Merrill and Sabharwal, 2024, Nowak et al., 2024]

59

Training a model to search: Basic idea

- Train a model to generate a “thought” prior to a final output

po(Y+ 2)

“output” “thought”

- At inference time, just sample a thought+output

- In principle, the model can learn to try alternatives, perform
refinement, backtrack within the thought

60

Training for long chain-of-thought [DeepSeek-Al et al., 2025]

- Approach 1: reinforcement learning

- Policy: given a math problem x, generate a thought + answer
- Reward: is the answer correct

61

Training for long chain-of-t t [DeepSeek-Al et al., 202

DeepSeek-R1-Zero AIME accuracy during training DeepSeek-R1-Zero average length per response during training

A z
" A NN
W

[2000 4000 6000 8000
o 2000 4000 6000 8000 Steps

Accuracy improves during training Response length increases to > 10,000

62

Training for long chain-of-thought [DeepSeek-Al et al., 2025]

Question: If a > 1, then the sum of the real solutions of m = x is equal to
Response: <think>

To solve the equation va — Va +x = x, let’s start by squaring both - - -

(a—\/m)2=x2 = a—+Va+x=2x2

Rearrange to isolate the inner square root term:

(@-x*)?=a+x = a®-2ax>+(x?)? =a+x = x*-2ax? —x+(a®>-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va—Varzox

First, let’s square both sides:
a-Vat+tx=x* = Va+tx=a-x
Next, I could square both sides again, treating the equation: - - -

2

Example response

63

ht patterns credits: weihua Du

. Uncertainty

- Wait... [Hold on...

- Wait-actually, does this formula apply here?

. Branching, backtracking, retrying

- Alternatively, generating functions could model this problem...
- Revisiting...

- Wait, I'm overthinking. Let’s try again...

. Verification

- Let’s check if we made an error. We should verify...

- This is a contradiction, so we must have made a mistake.
- Let’s test this with...

. Key Points

- Key takeaway... | It's worth noting...

. Clarification
- In other words... | To clarify...

. Synthesis
- Ultimately... | Putting it all together...

64

CoT Encyclopedia [Lee et al.

3. Criteria Compression via

1. Classification Criteria Identification 2. Classification Criteria Embedding i @i

N criteria k criteria (k << n)
Analytical Perspective: Top-down vs Bottom-up e Analytical T
rapective Perspective 3
Idea Development: Multiple vs Single pspeianaly o Tdea Development *
<
g g
Reasoning Type: Inductive vs Deductive Reasoning Type Reasoning Type
Verification Focus i "
Focua: Hypothesird: o dri Verification Focus
PCA1 PCA1
4. Rubric Generation 5. Pattern Analysis Report Generation Use cases
Analytical Bottom-up: Clearly Bottom-up A Reasoning pattern X Optimal reasoning
Perspective Approach. Strongly inclined to analysis pattern control
Cmriy e demonstrates multiple
Idea Development ... TR EaOIOuERG —— TypeA @
S @ ¢ ays 2
Reasoning Type APPToach: Demonstrates a abilty he given response demonstrates AN
giIveel] R e strong deductive reasoning.... * * TypeB Pttn. A Pitn. B
structure .. c
Verification Focus g TypeC ‘Use Pattern A to

solve the problem ..

The COT ENCYCLOPEDIA: Analyzing, Predicting,
and Controlling how a Reasoning Model will Think

Seongyun Lee! ™" Seungone Kim** Minju Seo' Yongrae Jo'
Dongyoung Go** Hyeonbin Hwang' Jinho Park'
Xiang Yue! Sean Welleck? Graham Neubig? Moontae Lee Minjoon Seo'

KAISTAI' Camegie Mellon Universty? LG Al Research®
NAVER Search US' Cornell University®

{seongyun, minjoon}0kaist.ac.kr seungonaliemu.edu

65

he length: L1 [Aggarwal and Welleck,

- Train model with
reinforcement learning to
adhere to length constraints

- E.g. “use up to 1000 tokens”
provided in the prompt

- Reward: correctness and
length constraint penalty

L1: Controlling How Long A Reasoning Model Thinks
With Reinforcement Learning

Pranjal Aggarwal Sean Welleck

Carnegie Mellon University Carnegie Mellon University
60%
L1-Max o o
50% A
@
O @

L1-Exact P

40% \‘,//
<

Uncontrollable
reasoning models

Pass Rate

w
S
X

S1: Controllable, but

20%
worse performance

512 1K 2K 4K 8K
Tokens Used

66

Controlling the length: L1 [Aggarwal and Welleck, 2025]

il & @ 11-qwen-1.5b-max 2 Eject A

If x is even, x + 5 is odd. @ Appearance G Clear Al @ Duplicate

You

Prove that if x is even, x + 5 is odd. Think for 500 tokens.

Assistant = 11-qwen-1.5b-max

**

Okay, so | need to prove that if x is even, then x + 5 is odd. Hmm, let me think about this step by
step.

First, | remember that an even number is any integer that can be written as 2k, where k is an integer.

Bay F s mE e = e e s e R

Type a message and press Enter to send ...

Z

Demo: Using L1 on a laptop in LM studio

Long chain-of-thought | sequential vs. parallel

- Sequential: long
chain-of-thought

- Parallel: majority voting
(multiple long COTs)

70.0%
65.0%
60.0%
55.0%
50.0%
45.0%
40.0%
35.0%

Macro Average
Our Methods:

—e— L1 - Max (512 tokens)
—o— L1 - Max (1024 tokens)

._-767 L1 - Max (2048 tokens)
L1 - Max (3600 tokens)
g

Baselines:
7 .
/ —— Agentica-4K

—=— Agentica-24K
»\//’. —— Qwen-2.5-1.5B-Math

—— DeepSeek-R1-1.5B

5121K 2K 4K 8K16B2K
Tokens Used

[Aggarwal and Welleck, 2025]

68

Reasoning models as evaluators in Best-of-N [Kim et al., 2025]

Branch the output into steps Evaluate each of the steps as well as the Merge the step-wise judgments
while retaining the original result whole output based on its correctness and outcome judgments
Reasoning 3
Yi outcome Ci + Ji
. evaluator
< original outcome
output CoT & judgment
{zi,yi} > | My)
i Reasoning el b
Yiz Ci2 Ji2 ;
~ . process : ! 7 fial
. evaluator 2 score
YiN CiN Jin
stops step-wise
i CoTs & judgments
N
Qeals L. . . .
ling E i Compute with R g
Models as Process Evaluators
Seungone Kim'* Ian Wu®* Jinu Lee®* Xiang Yue!
Seongyun Lee' Mingyeong Moon? Kiril Gashteoyski®® Carolin Lawrence’
Julia Hockenmaier’ ~ Graham Neubig! ~Sean Welleck
'CMU ZIndependent Researcher SUIUC “KAIST Al
SNEC Laboratories Europe 7Ss.Cyril and Methodius University of Skopje

69

Reasoning models as evaluators in Best-of-N [Kim et al., 2025]

Evaluator Performance

72.5:

70.0:

65.0:

62.5-

60.0-

57.5

55.0:

48

46

Generator Performance

4096 . . 32768 8192 . 16:284 32768
Evaluation-Time Compute Evaluation-Time Compute

Scaling Evaluation-time C with R

Models as Process Evaluators

Seungone Kim'* Tan Wu?* Jinu Lee™ Xiang Yue!
Seongyun Lee! Mingyeong Moon? Kiril Gashteovski®® _Carolin Lawrence’
Julia Hockenmaier’ ~ Graham Neubig! ~Sean Welleck

'CMU “Independent Researcher SUIUC “KAIST Al
SNEC Laboratories Europe 7S5.Cyril and Methodius University of Skopje

70

Part 2 recap

- Train a model to generate a long sequence, then use a simple
inference algorithm

- Internally can perform backtracking, self-correction, etc.
- Emerging area of research!

71

Today's tutorial | recap

1. Test-time inference strategies take a trained model and improve
performance by:
- Generating tokens according to a strategy
- Incorporate external information

- Reward models
- Environment feedback

72

Today's tutorial | recap

1. Test-time inference strategies take a trained model and improve
performance by:
- Generating tokens according to a strategy
- Incorporate external information
- Reward models
- Environment feedback
2. Two complementary meta-generation strategies
- Call a generator to generate a thought prior to an answer
- Long chain-of-thought
- Call a generator multiple times in a structured way
- parallel, tree search, refinement

72

Additional resources

Published in Transactions on Machine Learning Rescarch (11/2024) Neuris 2024 Tutorial
leurips utorial:
Beyond Decoding: Meta-Generation Algorithms for
From Decoding to Meta-Generation: Large Language Models
I time A for Large L Models

T9H¢3
9@&@

arnegie Mellon Uriversity ZUniversity ‘o whil ot EleutherAl “Meta Al

NeurlPS 2024 LLM Inference Tutorial:
s https://cmu-13.github.io/neurips2024-
inference-tutorial/

TMLR Survey [Welleck et al., 2024]

73

https://cmu-l3.github.io/neurips2024-inference-tutorial/
https://cmu-l3.github.io/neurips2024-inference-tutorial/

Additional resources

Home About CallforPapers Speakers Schedule Organizers

THE FIRST WORKSHOP ON TEST-TIME SCALING AND
REASONING MODELS
(SCALR @ COLM 2025)

October 10, 2025, Montreal, Canada

About The \X/orkshop i
© Palais des Congrés.

The p focuses on challenges PP in scaling and f Montreal, Canada

large language mede\sauesnme o ue!og ow in size an d(apab\ly understanding how to

effectively scale their performance and enhance theis ing abilities during inference has become increasingly () October 10, 2025

e

1st Workshop on Test-Time Scaling and Reasoning Models at COLM 2025
https://scalr-workshop.github.io/

https://scalr-workshop.github.io/

Sean Welleck
Carnegie Mellon University
Learning, Language, and Logic (L3) Lab
www.wellecks.com

75

www.wellecks.com

Appendix

Additional results

52 52
@ 50 e 50
o o
[3
4 4
z 8 z 8
o O
Total 5 46 5 46
avg. ® &
5 44 5 44
2 £
o o
5 42 5 42
c c
@ @
O 40 O 40
38 3 4 8 16 32 64 Biov 10% 10%
Inference Calls (log scale) Inference compute (log scale)
50 50
@ @
j=2} j=2}
o o
o o
z 45 z 45
o o
Leet ((ncg §
Code _ 40 = 40
© ©
Q Q
c c
Q Q
O 35 O 35
2 4 8 16 32 64 107 10" 10
Inference Calls (log scale) Inference compute (log scale)
Direct Outcome Evaluator Reasoning Outcome Evaluator
(SkyWork-Reward-Gemma-2-278-v0.2) (DeepSeek-R1-Distill-Qwen-328) Reasoning Process+Outcome Evaluator
Direct Process Evaluator Reasoning Process Evaluator ® (DeepSeek-R1-Distill-Qwen-328)
(Qwen2.5-Math-PRM-72B) (DeepSeek-R1-Distill-Qwen-32B) 76

Additional results

Impact of Pattern-Based Instructions

GPQA-Diamond MMLU-Redux MATH-500 XsTest wild guard
] 1 95.5 95.4
=1 92.3 Te1.1 91, 1“'0 92.9
= 88.989.289.790.1 9L 2 89.1 89.6
g7 Bl & 85.4
. 810 80.7 2
gl 770721 o2 78.278.678.879.3 " & |
£ 78.4 3
g mi727 o1
§ o 5
w
= Noti i (random) I-d;) ptimal-q

77

Additional results

(a) Question vs Pattern Similarity

R2 = 0.4045
p-value = 2.76e-201

o o
© ©
=] 5

Pattern - Pattern Similarity
=}
[+
4

—— y=027x+0.73

0.3 0.4 0.5 0.6 0.7 0.8
Question - Question Similarity

78

References i

[3 Aggarwal, P, Parno, B., and Welleck, S. (2024).
Alphaverus: Bootstrapping formally verified code generation
through self-improving translation and treefinement.
https://arxiv.org/abs/2412.06176.

[§ Aggarwal, P. and Welleck, S. (2025).
L1: Controlling how long a reasoning model thinks with
reinforcement learning.
https://arxiv.org/abs/2503.04697.

79

https://arxiv.org/abs/2412.06176
https://arxiv.org/abs/2503.04697

References ii

[§ Asai, A, Hex,)., Shaox, R, Shi, W.,, Singh, A, Chang, J. C, Lo, K,,
Soldaini, L., Feldman, Tian, S., Mike, D., Wadden, D., Latzke, M.,
Minyang, Ji, P, Liu, S., Tong, H., Wu, B., Xiong, Y., Zettlemoyer, L.,
Weld, D., Neubig, G., Downey, D., Yih, W-t,, Koh, P. W., and
Hajishirzi, H. (2024).

OpenScholar: Synthesizing scientific literature with
retrieval-augmented language models.
Arxiv.

[§ Brown, B, Juravsky, J., Ehrlich, R, Clark, R, Le, Q. V, Ré, C,, and
Mirhoseini, A. (2024).
Large language monkeys: Scaling inference compute with
repeated sampling.
https://arxiv.org/abs/2407.21787.

80

https://arxiv.org/abs/2407.21787

References iii

[§ Chen, X, Lin, M., Scharli, N, and Zhou, D. (2024).
Teaching large language models to self-debug.
In The Twelfth International Conference on Learning
Representations.

@ Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H,, Kaiser, L.,
Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and
Schulman, J. (2021).

Training verifiers to solve math word problems.
https://arxiv.org/abs/2110.14168.

81

https://arxiv.org/abs/2110.14168

References iv

E DeepSeek-Al, Guo, D, Yang, D., Zhang, H,, Song, J., Zhang, R, Xu, R,
Zhu, Q, Mg, S, Wang, P, Bi, X, Zhang, X, Yu, X, Wu, Y., Wu, Z. F,
Gou, Z, Shao, 7, Li, Z,, Gao, Z,, Liu, A, Xue, B, Wang, B., Wu, B.,
Feng, B, Lu, C, Zhao, C, Deng, C,, Zhang, C, Ruan, C, Dai, D., Chen,
D, Ji, D, Li, E, Lin, F, Dai, F, Luo, F, Hao, G., Chen, G, Li, G,, Zhang,
H., Bao, H., Xu, H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H,, Li, H,
Guo, J,, Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J., Li, J., Cai, J. L, Ni, J,,
Liang, J., Chen, J,, Dong, K, Hu, K, Gao, K., Guan, K, Huang, K, Yu,
K., Wang, L, Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L, Xia, L.,
Zhang, M, Zhang, M., Tang, M,, Li, M., Wang, M., Li, M,, Tian, N.,
Huang, P, Zhang, P, Wang, Q. Chen, Q, Du, Q, Ge, R, Zhang, R,
Pan, R, Wang, R, Chen, R.J, Jin, R. L, Chen, R, Lu, S., Zhou, S,,
Chen, S, Ye, S, Wang, S, Yu, S, Zhou, S, Pan, S, Li, S. S, Zhou, S,,
Wu, S, Ye, S, Yun, T, Pei, T, Sun, T., Wang, T., Zeng, W., Zhao, W.,

82

References v

Liu, W, Liang, W., Gao, W.,, Yu, W., Zhang, W,, Xiao, W. L., An, W,, Liu,
X., Wang, X, Chen, X, Nie, X, Cheng, X, Liu, X, Xie, X, Liu, X,, Yang,
X, Li, X, Su, X, Lin, X, Li, X. Q,, Jin, X,, Shen, X, Chen, X,, Sun, X,
Wang, X., Song, X., Zhou, X, Wang, X,, Shan, X,, Li, Y. K, Wang, Y. Q,
Wei, Y. X, Zhang, Y, Xu, Y, Li, Y., Zhao, Y, Sun, Y., Wang, Y., Yu, Y,
Zhang, Y, Shi, Y, Xiong, Y., He, Y., Piao, Y, Wang, Y, Tan, Y, Ma, Y,
Liu, Y, Guo, Y, Ou, Y, Wang, Y., Gong, Y., Zou, Y., He, Y, Xiong, Y.,
Luo, Y, You, Y, Liu, Y, Zhou, Y, Zhu, Y. X, Xu, Y, Huang, V., Li, Y,
Zheng, Y, Zhu, Y, Ma, Y, Tang, Y, Zha, Y, Yan, Y., Ren, Z. Z,, Ren, Z,,
Sha, Z, Fu, Z,, Xu, Z,, Xie, Z., Zhang, Z., Hao, Z., Ma, Z,, Yan, Z., Wu, Z,
Gu, Z, Zhu, Z, Liu, Z, Li, Z., Xie, Z,, Song, Z., Pan, Z., Huang, Z., Xu,
Z., Zhang, Z., and Zhang, Z. (2025).

Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning.

83

References vi

[@ Feng, G, Zhang, B, Gu, Y, Ye, H., He, D., and Wang, L. (2023).
Towards revealing the mystery behind chain of thought: A
theoretical perspective.

In Thirty-seventh Conference on Neural Information Processing
Systems.

[@ Huang,). Chen, X, Mishra, S.,, Zheng, H. S., Yu, A. W,, Song, X, and
Zhou, D. (2024).
Large language models cannot self-correct reasoning yet.
In The Twelfth International Conference on Learning
Representations.

E Kaplan, J., McCandlish, S., Henighan, T, Brown, T. B, Chess, B,
Child, R., Gray, S., Radford, A, Wu, J., and Amodei, D. (2020).
Scaling laws for neural language models.
https://arxiv.org/abs/2001.08361.

84

https://arxiv.org/abs/2001.08361

References vii

& Kim, S, Wu, I, Lee,], Yue, X, Lee, S., Moon, M., Gashteovski, K.,
Lawrence, C., Hockenmaier, J., Neubig, G., and Welleck, S. (2025).
Scaling evaluation-time compute with reasoning models as
process evaluators.
https://arxiv.org/abs/2503.19877

[§ Koh, J.Y, McAleer, S, Fried, D., and Salakhutdinov, R. (2024).
Tree search for language model agents.
arXiv preprint arXiv:2407.01476.

@ Lee, S, Kim, S, Seo, M., Jo, Y, Go, D., Hwang, H., Park, J., Yue, X,,
Welleck, S., Neubig, G., Lee, M., and Seo, M. (2025).
The cot encyclopedia: Analyzing, predicting, and controlling
how a reasoning model will think.
https://arxiv.org/abs/2505.10185.

85

https://arxiv.org/abs/2503.19877
https://arxiv.org/abs/2505.10185

References viii

& LY, Lin, Z, Zhang, S, Fu, Q,, Chen, B, Lou, J.-G., and Chen, W.
(2023).
Making language models better reasoners with step-aware
verifier.
In Rogers, A, Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
5315-5333, Toronto, Canada. Association for Computational
Linguistics.

E Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B,, Lee, T,
Leike, J., Schulman, J., Sutskever, I, and Cobbe, K. (2024).
Let's verify step by step.
In The Twelfth International Conference on Learning
Representations.

86

References ix

[Madaan, A, Tandon, N, Gupta, P, Hallinan, S., Gao, L., Wiegreffe,
S., Alon, U, Dziri, N., Prabhumoye, S, Yang, Y., Gupta, S., Majumder,
B. P, Hermann, K., Welleck, S., Yazdanbakhsh, A., and Clark, P.
(2023).
Self-refine: Iterative refinement with self-feedback.
In Thirty-seventh Conference on Neural Information Processing
Systems.

3 Merrill, W. and Sabharwal, A. (2024).
The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

87

References x

3] Nakano, R, Hilton, J,, Balaji, S., Wu, J., Ouyang, L., Kim, C,, Hesse, C,
Jain, S., Kosaraju, V., Saunders, W., Jiang, X,, Cobbe, K., Eloundou,
T., Krueger, G., Button, K, Knight, M., Chess, B., and Schulman, J.
(2022).
Webgpt: Browser-assisted question-answering with human
feedback.
https://arxiv.org/abs/2112.09332.

[Nowak, F, Svete, A, Butoi, A, and Cotterell, R. (2024).
On the representational capacity of neural language models
with chain-of-thought reasoning.
In Ku, L-W., Martins, A.,, and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12510-12548, Bangkok,
Thailand. Association for Computational Linguistics.

88

https://arxiv.org/abs/2112.09332

References xi

[3 OpenAl (2024).
Learning to reason with llms.
https://openai.com/index/
learning-to-reason-with-1lms/.

[§ Polu, S. and Sutskever, 1. (2020).
Generative language modeling for automated theorem proving.

@ snell, C, Lee,), Xu, K, and Kumar, A. (2024).
Scaling llm test-time compute optimally can be more effective
than scaling model parameters.
https://arxiv.org/abs/2408.03314.

89

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2408.03314

References xii

@ Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R, Voss, C,
Radford, A., Amodei, D., and Christiano, P. F. (2020).
Learning to summarize with human feedback.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 3008-3021. Curran Associates, Inc.

[sun,Z,Yu, L, Shen,Y, Liu, W, Yang, Y., Welleck, S., and Gan, C.
(2024).
Easy-to-hard generalization: Scalable alignment beyond human
supervision.
In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

90

References xiii

[§ Uesato,)., Kushman, N., Kumar, R, Song, F, Siegel, N,, Wang, L.,
Creswell, A, Irving, G., and Higgins, 1. (2022).
Solving math word problems with process- and outcome-based
feedback.

@ wang, P, Li, L, Shao, Z, Xu, R, Dai, D, Li, Y., Chen, D., Wu, Y, and
Sui, Z. (2024a).
Math-shepherd: Verify and reinforce LLMs step-by-step without
human annotations.
In Ku, L-W., Martins, A, and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9426-9439, Bangkok,
Thailand. Association for Computational Linguistics.

9

References xiv

[@ wang, X, Wei, J,, Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S.,
Chowdhery, A, and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in
language models.
In The Eleventh International Conference on Learning
Representations.

@ Wang, Y., Wu, Y, Wei, Z, Jegelka, S., and Wang, Y. (2024b).
A theoretical understanding of self-correction through
in-context alignment.
https://arxiv.org/abs/2405.18634.

92

https://arxiv.org/abs/2405.18634

References xv

& wei, ., Wang, X., Schuurmans, D., Bosma, M., brian ichter, Xia, F,
Chi, E. H, Le, Q. V, and Zhou, D. (2022).
Chain of thought prompting elicits reasoning in large language
models.
In Oh, A. H., Agarwal, A, Belgrave, D., and Cho, K, editors,
Advances in Neural Information Processing Systems.

[Welleck, S, Bertsch, A, Finlayson, M., Schoelkopf, H., Xie, A,
Neubig, G., Kulikov, I, and Harchaoui, Z. (2024).
From decoding to meta-generation: Inference-time algorithms
for large language models.
https://arxiv.org/abs/2406.16838.

93

https://arxiv.org/abs/2406.16838

References xvi

@ wu, Y, Sun, Z, Li, S, Welleck, S., and Yang, Y. (2024).
Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language

models.
https://arxiv.org/abs/2408.00724.

[§ zaharia, M., Khattab, O., Chen, L., Davis, J. Q, Miller, H., Potts, C.,
Zou, J., Carbin, M., Frankle, J., Rao, N., and Ghodsi, A. (2024).
The shift from models to compound ai systems.
https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/.

@ Zhang, L., Hosseini, A, Bansal, H., Kazemi, M., Kumar, A,, and
Agarwal, R. (2024).
Generative verifiers: Reward modeling as next-token prediction.

9%

https://arxiv.org/abs/2408.00724
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	Appendix

