
Bridging Informal and Formal

Mathematical Reasoning

Sean Welleck

May 28, 2025

Carnegie Mellon University



AI in expert domains

AI in expert domains

• Finance

• Science

• Mathematics

• Open-ended dialogue

• Come up with counterexamples

• Help write proofs

• ...

1



AI in expert domains

AI in expert domains

• Finance

• Science

• Mathematics

• Open-ended dialogue

• Come up with counterexamples

• Help write proofs

• ...

1



“Informal” mathematics

Math as raw data (text, images, ...)

• Flexible

• Widely used

• Difficult to check

Language model solution.

2



Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof Math as source code.

3



Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof
Theorem proving languages

3



Formal mathematics (Demo)

If R ⊆ S and S ⊆ T then R ⊆ T

4



Formal math for mathematics

Growing use in mathematics:

Terence Tao’s Lean formalization project (October 2023)

• New form of collaboration: break a big problem into multiple pieces

5



Formal math for mathematics

Growing use in mathematics:

Terence Tao’s Lean formalization project (October 2023)

• New form of collaboration: break a big problem into multiple pieces

5



Formal math for AI/LLMs

Formal math for AI

• Tests reasoning

• From easy: 1+1 = 2

• To hard: Fermat’s Last Theorem

• Verifiable

• Feedback signal for reinforcement learning

6



Formal math for AI/LLMs

Formal math for AI

• Tests reasoning

• From easy: 1+1 = 2

• To hard: Fermat’s Last Theorem

• Verifiable

• Feedback signal for reinforcement learning

6



LLMs ∩ formal math

Rapid progress in methods based on language models:

miniF2F benchmark performance, 2022-2024

7



LLMs ∩ formal math

Generated International Math Olympiad solution in Lean

(DeepSeek Prover-1.5B, Xin et al 2024)

8



LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and LLMs always use formal math?

9



LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and LLMs always use formal math?

9



Key challenge: the informal-formal gap

Informal ideas, intuitions, and even proofs are difficult to express formally:

• Each step of reasoning needs to be specified in detail

• Requires a deep knowledge of the formal system

10



Bridging Informal and Formal Mathematical Reasoning

This talk: Bridging Informal and Formal Mathematical Reasoning

11



This talk: Bridging Informal and Formal Mathematical Reasoning

1. Informal thoughts

2. Informal sketches

3. Towards research-level mathematics

12



I: Informal thoughts



1. Training models to “think” — Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck

ICLR 2025 (Spotlight)

13



1. Training models to “think” — Neural theorem proving

Neural theorem proving

• Math as checkable code

• Proof: sequence of (state, step)
14



1. Training models to “think” — Lean-STaR

Can we train a model to “think” before each step of formal reasoning?

15



1. Training models to “think” — Lean-STaR

Why?

• Plan proof steps

• Diversify search space

• More tokens can give more computational capacity

16



1. Training models to “think” — Lean-STaR

Lean-STaR (Self-taught reasoner1)

Learn to generate thoughts via reinforcement learning

1. Initialization

2. Reinforcement learning

1Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

17



1. Training models to “think” — Lean-STaR

1. Initialization

18



1. Training models to “think” — Lean-STaR

1. Initialization

18



1. Training models to “think” — Lean-STaR

2: Reinforcement learning

19



Training models to “think” — Lean-STaR

Algorithm: train on the successful proofs, and repeat:2

• Collect (state, thought, tactic) from successful proofs

• Train a new model p1θ(thought, tactic|state)
• Generate proofs

• ...

2I.e. Expert Iteration [Polu et al 2022], Rest-EM [Singh et al 2024]

20



Training models to “think” — Lean-STaR

• miniF2F: competition problems (AMC, AIME, IMO)

21



Training models to “think” — Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

P
as
s
ra
te

GPT-4

ReProver (retrieval-augmented)

COPRA (GPT-4 agent)

Lean-STaR 7B (start)

Lean-STaR 7B (+ thoughts)

Lean-STaR 7B (+ expert iteration)

22



Training models to “think” — Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

P
as
s
ra
te

GPT-4

ReProver

COPRA (GPT-4 agent)

Lean-STaR 7B (start)

Lean-STaR 7B

23



Training models to “think” — Lean-STaR

Increasing the search budget is more effective with thoughts

24



Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR

25



Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR
26



Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in DeepSeek Prover 1.5

27



Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in Kimina Prover (April 14 2025)

27



Training models to “think” — After Lean-STaR

More broadly, reasoning models that generate long chains-of-thought

have subsequently begun to revolutionize LLM reasoning:

OpenAI o1 reasoning model DeepSeek R1 reasoning model

28



Training models to “think” — Lean-STaR

Recap: Lean-STaR

• Training on formal code may be insufficient to learn the underlying

thought process needed to produce the code

• Learn to generate thoughts via reinforcement learning

29



This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal sketches

3. Towards research-level mathematics

30



II: Informal sketches



Motivation: informal proofs and formal proofs

How would we write this as a formal proof?

31



Motivation: informal proofs and formal proofs

A proof with a high-level sketch and low-level proof steps.

32



Low-level provers: Sledgehammer

Sledgehammer [Paulson 2010] calls out to external automated provers.

• First-order logic, higher-order logic, SMT

33



Low-level provers: Sledgehammer

Struggles due to the large search space of possible proofs

34



Idea: combine high-level and low-level proving

Idea: combine high-level (human, LLM) and low-level proving

35



Draft-Sketch-Prove

Draft, Sketch, Prove: Guiding Formal Theorem Provers with

Informal Proofs

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou

Jiacheng Liu, Wenda Li, Mateja Jamnik

Guillaume Lample, Yuhuai Wu

ICLR 2023 (Oral)

36



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Human-written or LLM-generated draft

37



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

LLM-generated sketch

37



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Low-level prover (Sledgehammer) fills in the gaps

37



Draft-sketch-prove

38



Draft-sketch-prove

Inference-time proof search scaling

38



Draft-sketch-prove

International Math Olympiad problem
38



Next: building a low-level prover for Lean

Recap:

• Draft-Sketch-Prove: generate high-level sketches and fill in gaps

• Isabelle’s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?

39



Next: building a low-level prover for Lean

Recap:

• Draft-Sketch-Prove: generate high-level sketches and fill in gaps

• Isabelle’s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?

39



LeanHammer

Premise Selection for a Lean Hammer

Thomas Zhu, Joshua Clune

Jeremy Avigad, Albert Q. Jiang, Sean Welleck

Under Review 2025

40



A hammer pipeline

A standard hammer pipeline:

41



A hammer pipeline

A standard hammer pipeline:

Existing components:

• Translation: LeanAuto [Qian et al 2025]

• ATP: Zipperposition [Cruanes et al 2015]

• Reconstruction: Duper [Clune et al 2024]

41



A hammer pipeline

A standard hammer pipeline:

Our challenge:

• Premise selection

• Combine pieces to create LeanHammer

41



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

42



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

42



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

42



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

43



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

43



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

43



LeanHammer

As a user, simply issue hammer at any step of a proof:

LeanHammer in action

44



LeanHammer — Example

Demo: start with human-written proof sketch (from Mathematics in Lean)

45



LeanHammer — Example

Demo: fill in the gaps (sorrys) with LeanHammer

46



LeanHammer — Quantitative results

Varying the premise selector within LeanHammer:

Held-out mathlib theorems
0
5
10
15
20
25
30
35
40
45
50

P
ro
of

ra
te

(%
)

No premise selection

ReProver retriever

MePO

LeanHammer retriever

LeanHammer retriever ∪ MePO

Ground truth premises

47



Recap

Sketching proofs and filling in the gaps

• Draft-Sketch-Prove (DSP)

• LeanHammer

48



Recap

Sketching proofs and filling in the gaps

• Draft-Sketch-Prove (DSP)

• LeanHammer

48



Recap

Sketching proofs and filling in the gaps

• Draft-Sketch-Prove (DSP)

• LeanHammer

48



This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal provers

3. Towards research-level mathematics

49



III: Research-level mathematics



What does it look like to formalize research-level math?3

3Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao

50

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/


What does it look like to formalize research-level math?3

3Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao

50

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/


Where can AI help?

As a start, can AI help with filling in small parts of the blueprint?

51



Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean

52



Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean

52



Where can AI help? — Existing tools

LLMLean example on Polynomial Freiman Rusza Conjecture project

52



Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results

53



Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results
• Part of a project

• Uses new definitions and lemmas

• New Benchmark: miniCTX

53



Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results
• Part of a project

• Uses new definitions and lemmas

• New Benchmark: miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck. ICLR 2025 (Oral).
53



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Towards research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

54



Thank you!

Collaborators on works in this talk (alphabetical by last name):

• Jeremy Avigad (CMU)

• Joshua Clune (CMU)

• Jiewen Hu (CMU)

• Mateja Jamnik (Cambridge)

• Albert Q. Jiang (Cambridge, Mistral)

• Timothee Lacroix (Meta, Mistral)

• Guillaume Lample (Meta, Mistral)

• Haohan Lin (Tsinghua)

• Wenda Li (Edinburgh)

• Jiacheng Liu (Washington)

• Zhiqing Sun (CMU, OpenAI)

• Yuhuai (Tony) Wu (Google, X.ai)

• Yiming Yang (CMU)

• Jin Peng Zhou (Cornell)

• Thomas Zhu (CMU)

Sean Welleck

CMU School of Computer Science

Learning, Language, and Logic (L3) Lab

www.wellecks.com

wellecks@cmu.edu

55


	I: Informal thoughts
	II: Informal sketches
	III: Research-level mathematics

