Bridging Informal and Formal
Mathematical Reasoning

Sean Welleck
May 28, 2025

Carnegie Mellon University

Al in expert domains

Al in expert domains

e Finance
e Science

e Mathematics

Al in expert domains

Al in expert domains

e Finance
e Science
e Mathematics

e Open-ended dialogue
e Come up with counterexamples
e Help write proofs

“Informal”’” mathematics

Math as raw data (text, images, ...

e Flexible
e Widely used
e Difficult to check

Input:
Let r be a root of x* + 5x +7 = 0. Compute (r — 1)(r + 2)(r + 6)(r + 3).

LLEMMA 34B solution:
We have
(r = 1)(r+2)(r + 6)(r +3) = (7 +r —2)(7 +9r +18)

=r* +107 + 257 +19r— 36
=" 457 +77 + 51+ 7+ 5 4207 + 14r — 36
=1 +57 + 257 +19r — 29
= (7 +5r+7)(” +4r—5)
= (0)(7 +4r —5)

-

Final Answer: The final answer is 0.

Language model solution.

Formal mathematics

Math as source code

lenna one_plus_one_equals_two:
+ = +1=20

= Suc (8 + 1)" by simp

o Write a specification (e.g., 1+1=2)
e Write a proof proof J T

thesis by simp

e Automatically checked

e Code compiles = correct proof Math as source code

Formal mathematics

Math as source code
e Write a specification (e.g., 14+1=2) |_:,\V/N

o Write a proof Lean Isabelle Cog

e Automatically checked

. Theorem proving languages
e Code compiles = correct proof proving fanguag

Formal mathematics (Demo)

fRCSand SC T thenRC T

VN

THEOREM PROVER

Formal math for mathematics

Growing use in mathematics:

Terence Tao
@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem
(Theorem 1.3) in my recent paper :

Terence Tao's Lean formalization project (October 2023)

Formal math for mathematics

Growing use in mathematics:

Terence Tao
@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem
(Theorem 1.3) in my recent paper :

Terence Tao's Lean formalization project (October 2023)

e New form of collaboration: break a big problem into multiple pieces

Formal math for Al/LLMs

Formal math for Al

e Tests reasoning

e From easy: 141 =2
e To hard: Fermat's Last Theorem

Formal math for Al/LLMs

Formal math for Al

e Tests reasoning

e From easy: 141 =2
e To hard: Fermat's Last Theorem

e Verifiable

e Feedback signal for reinforcement learning

LLMs N formal math

Rapid progress in methods based on language models:

70
52.5
35

17.5

Jiang 2022 Wu2022 Jiangetal 2023 Zhao 2023 Lin 2024 Wu 2024 Xin 2024

miniF2F benchmark performance, 2022-2024

LLMs N formal math

theorem imo_1960_p2 (x : R) (hp : 0 < 1 + 2 * x) (hy : (1 - Real.sqrt (1 + 2 *

x)) "~ 2% 0)
(hy : 4 *x "2/ (1 -Real.sqrt (1 +2 *x)) ~2<2*xx+9) :-(1/2)
<X Ax<45/ 8 :=by

norm_num at hy h; hp

have h3 : 0 < 1 + 2 * x := by linarith

have hy : 0 < 1 + Real.sqrt (1 + 2 * x) := by
nlinarith [Real.sqrt_nomneg (1 + 2 * x)]

have hs : 4 * x ~ 2/ (1 - Real.sqrt (1 + 2 * x)) ~ 2< 2% x + 9 := by
linarith

have hs : 1 - Real.sqrt (1 + 2 * x) # 0 := by
intro h
apply hy
nlinarith

have hy : 4 * x ~ 2 / (1 - Real.sqrt (1 + 2 * x)) = 2 = (1 + Real.sqrt (1 +
2 * x)) ~ 2 :=by
field_simp [he]
nlinarith [sq_sqrt (show O < 1 + 2 * x by linarith)]

rw [h;] at hs

constructor <;> nlinarith [sq_sqrt (show 0 < 1 + 2 * x by linarith)]

Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)

LLMs N formal math

Terence Tao

@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem
(Theorem 1.3) in my recent paper :

The ability of Github copilot to correctly anticipate multiple lines of code for
various routine verifications, and inferring the direction | want to go in from
clues such as the names | am giving the theorems, continues to be uncanny.

Terence Tao's Lean formalization project (October 2023)

LLMs N formal math

Terence Tao

@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem
(Theorem 1.3) in my recent paper :

The ability of Github copilot to correctly anticipate multiple lines of code for
various routine verifications, and inferring the direction | want to go in from
clues such as the names | am giving the theorems, continues to be uncanny.

Terence Tao's Lean formalization project (October 2023)

Key challenge: the informal-formal gap

Informal ideas, intuitions, and even proofs are difficult to express formally:

Informal Formal

O e
B

e Each step of reasoning needs to be specified in detail

e Requires a deep knowledge of the formal system

10

Bridging Informal and Formal Mathematical Reasoning

Informal Formal

(39 b
B

This talk: Bridging Informal and Formal Mathematical Reasoning

11

This talk: Bridging Informal and Formal Mathematical Reasoning

1. Informal thoughts
2. Informal sketches

3. Towards research-level mathematics

12

I: Informal thoughts

1. Training models to “think” — Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiging Sun, Yiming Yang, Sean Welleck

ICLR 2025 (Spotlight)

13

1. Training models to “think” — Neural theorem proving

Neural theorem proving

Theorem

subset : rcs-s-sct-orct

}

Proof State

vIX
| VN

Next step
("tactic")

\——

e Math as checkable code

e Proof: sequence of (state, step)
14

1. Training models to

Input - Lean State

it State
b : N

Nat.lcm 120 b
Nat.gcd 120 b
208

Output - Lean Tactic

Nat.ged_mul_Lem 120 b

think” — Lean-STaR

Input - Lean State

N

Nat.lcm 120 b
Nat.gcd 120 b
= u8

Output - Natural Language Thought

4 Reasoning
To determine the specific value
divisor (GCD) and

of b #rum the glugn hypotheses abaut itz greatest comon
least common multiple (LCH) with '120', we need to relate the given GCD to the
LcH, recognizing the fundamental theorem of greatest comon divisors which relates LCH to GCD in
a specific way. This will enable us to establish an equation involving 'b', facilitating the
identification of 'b' through algebraic manipulation.

Output - Lean Tactic

Next ta

have h :=

cti
Nat. gcd mul_lem 120 b

Can we train a model to “think” before each step of formal reasoning?

15

1. Training models to “think” — Lean-STaR

Input - Lean State

i State
b : N

ho : Nat.lcm 120 b
h. : Nat.ged 120 b
: b = 2u8

: Nat.lcm 120 b

: Nat.ged 120 b

b = 2ug

Output - Natural Language Thought

##4 Reasonin

To determine the specific value of 'b' from the given hypotheses about its greatest common
divisor (GCD) and least common multiple (LCM) with '120', we need to relate the given GCD to the
LcM, recognizing the fundamental theorem of greatest common divisors which relates LCH to GCD in
[a specific way. This will enable us to establish an equation involving 'b', facilitating the
lidentification of 'b' through algebraic manipulation.

Output - Lean Tactic
Next tactic:
have h := Nat.gcd_nul_lcm 120 b

Output - Lean Tactic

i Next tactic:
have h := Nat.gcd_mul_lem 120 b

Why?

e Plan proof steps

e Diversify search space

e More tokens can give more computational capacity

16

g models to “think” — Lean

Lean-STaR (Self-taught reasoner?)

Learn to generate thoughts via reinforcement learning

1. Initialization

2. Reinforcement learning

Ynspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

17

1. Training models to “think” — Lean-STaR

1. Initialization

Annotate thoughts "retrospectively"

Formal |~ ""
proofs

18

1. Training models to “think” — Lean-STaR

1. Initialization

Train initial model on

(state, tl«ougl«\t) -> step examples

[state)(thought] ((step
(state)(thought)((step) e

(state) thought][step)

18

1. Training models to “think” — Lean-STaR

2: Reinforcement learning

rp[thought][step][thought l step]
f_'[thought I step I thought I step] —b -
N gt () i) -

Reinforcement
Learning

19

Training models to “think” — Lean-

Algorithm: train on the successful proofs, and repeat:?

e Collect (state, thought, tactic) from successful proofs
e Train a new model p}(thought, tactic|state)
e Generate proofs

2l.e. Expert Iteration [Polu et al 2022], Rest-EM [Singh et al 2024]

20

Training models to “think” — Lean-STaR

e miniF2F: competition problems (AMC, AIME, IMO)

Problem 1959 IMO Problems/Problem 1

o 2ln+4 i
Prove that the fraction — is irreducible for every natural number n.
14n + 3

tran [mathlio !
test ; theorem imo_1959_pl
(n : N)

(he : @ < n) :
Nat.gcd (21xn + 4) (14%n + 3) = 1 := by sorry

21

Training models to “think” — Lean-STaR

Pass rate

miniF2F test

0o GPT-4

00 ReProver (retrieval-augmented)
lo COPRA (GPT-4 agent)

I Lean-STaR 7B (start)

I LeanSTaR 7B (+ thoughts)
B0 Lean-STaR 7B (+ expert iteration)

22

Training models to “think” — Lean-STaR

Oo GPT-4

0o ReProver

BB COPRA (GPT-4 agent)
BN Lean-STaR 7B (start)
[]] Lean-STaR 7B

Pass rate

miniF2F test

23

Training models to “think” — Lean-STaR

Performance Comparison

35

Percentage (%)
& 8

N
o

—e— SFT-Direct (Search)
15 ~—e— SFT-Direct (Sampling)
—e— Lean-STAR (Sampling)

32 64
Search budget

Increasing the search budget is more effective with thoughts

24

Training models to “think” — Lean-STaR

theorem amc12a_2002_p6 (n : N) (hp : 0 < n)
:3dm,m>nAJp, m*xp<m+p:=
use n + 1, by linarith only [hol -- Reasoning: To demonstrate the ezistence of
such an 'm’ and “p° that satisfy the given inequalities, we leverage the
property of natural numbers that ensures an increase in 'n’ from “0° leads to
the possibility of finding such "m” and “p°. This approach is supported by the
fundamental property of natural numbers and their arithmetic operations,
suggesting that for a given ‘n° greater than '0°, there ezists a successor “m’
and a number ‘p’ that satisfy the conditions outlined.
exact (0, by simp) -- Reasoning: To demonstrate that there exists an \(n \in N
\) such that \((n + 1) ¥ p \legn + 1 + p\) holds for some \(p \in N\), we
recognize that setting \(p = 0\) satisfies the inequality by the properties of
zero in arithmetic. This is because \(n + 1 > 0\) by assumption, ensuring the
left-hand side is non-negative and the right-hand side simplifies to \(n +
1\), making the inequality trivially true.

Example generated thoughts and proof from Lean-STaR

25

Training models to

think” — Lean-STaR

1983p2 (xp i R) (£ : R > R) (o : 0<pApP<1®) y:p<xAx

@B+ £z = abs (x-p) +abs (x- 15) + abe (x - p - 18))
P15 < f£x im
cases’ by with by By - Reasoning: Given a function |(f1) defined over the real
munbers, where 1(1(2)1) equels fhe oun of ihe chaoiute vaines of the
differences V), \(z - 151), ond \(o - p - 151), along with conditions
o o na) ot ensure (017 S0 bethemn (310 andl\C151) and 1513
is positive, we aim to show that |(f(z) \geq 151). To demonstrate this, ue
consider all possidle cases for the position of |(zl) relatis
4 \(151), and at | (151)

sinp Do, sbi.of-nomeg (enb.nomneg.2 1) abs;of nommog (eub-nomneg.2), +]
~Reasoming: The objective i3 to show that |(f(s)|) is at Least 15 for |(z1)
vithin the sounds 103 \he s \ie 3600 shere (913 4o pasitive put Lovs th

given bounds, ue ain o denonstrate ihe desirad inequality |(@) \ge 16)
Jinp only [aba.of nomneg] Reasoning: The objective is to establish an
mequality imaiving.on eapression with abeeiute vilues and 8 sum uhere all
terms are functions of |(z|). By recognizing that the absolute value functions
are aluays non-negative, ue can simplify the given ezpression by removing the

hus focusing on the arithmetic manipulation of the
terms to demonstrate the inequality

-1dd-oq-addpuk] ot +

Reasoning: The objective
Yz g sl

n terms of their underlying eapreasions and applying the given constraints
pos, #] -- Reasoning: To prove the given inequality involuing

" simplification using algebraic properties and given

hypotheses il directly lead s to the desired inequality by recognising the

algebraic manipulation and application of the known bounds “hi" and hy’, a

well as the non-negat »

w [abs._of _nonpos]

‘Iz -p - 15 - p

at 15 < 15
and "z, Given p < 15
n-positive. This
cbaervation alloss us £ epply the property that the shasiate value of &
non-positive number is equal to its negative value, theredy simplifying the
eapression on the right-hand side of the inequality.

all_goals linarith -- Reasoning: The goal involves demonstrating a relat
betueen ezpressions involuing inequalities and subtraction. The simplification
of these ecpreasions into o form that directly compares th 1

and

can lead to a straightforuard application of known inequalit

propertics, demonstrating the inequality's validity under the given conditions

Example generated thoughts and proof from

Lean-STaR

26

Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used
component of LLM-based theorem proving:

&deepseek

DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback
for Reinforcement Learning and Monte-Carlo Tree Search

Huajian Xin*, ZZ. Ren, Junxiao Song", Zhihong Shao*, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, ZF. Wu, Fuli Luo, Chong Ruan

DeepSeek-Al

Output:

-- This s equivalent to showing that 9x?sin’x-12xsinx+4>0, and the
left-hand side can be rewritten as a perfect square (3xsinx-—2)2.
-- We use the fact that (3xsinx—2)? is non-negative to establish this.

\

nlinarith [sq_nonneg (3 * x * Real.sin x - 2)]
e

generating theorem proof code. Similar to Lean-STaR (Lin et al., 2024), which performs isolated
chain-of-thought reasoning (Wei et al., 2022; Feng et al., 2023) before each proof step, our method
integrates this reasoning directly as comments within the proof code. We use the DeepSeek-

Informal thoughts in DeepSeek Prover 1.5

27

Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used
component of LLM-based theorem proving:

Input \\ @ & KIMINA-PROVER PREVIEW: TOWARDS LARGE FORMAL
REASONING MODELS WITH REINFORCEMENT LEARNING

et lnguage prblem satmen ‘

TECHNICAL REPORT OF KIMINA-PROVER PREVIEW
formal language problom statement |
Numina & Kimi Team
$ Kimina-Prover
/ Output \
(|
Reasoning Block 1 Next, we'll substitute d = % back into one of the equations to solve for a. Let's use ho: a + 6d = 30

informal reasoning + Lean 4 code snippet

Reasoning Block 2 a=30-45=-15

informal reasoning + Lean 4 code snif t
N e In Lean, once we have d, we can determine a:

a
linarith [ho,

Reasoning Block n

informal reasoning + Lean 4 code snippet Now we need to compute a + 20d: a +20d = —15 +20(¢) = 15+ 150 = 135

In Lean, we can directly compute a + 20d using the values of a and d:
Final Lean 4 Code [Linarith (ha, ha)
{ complete Lean 4 code |

_)

Informal thoughts in Kimina Prover (April 14 2025)

27

Training models to “think” — After Lean-STaR

More broadly, reasoning models that generate long chains-of-thought

have subsequently begun to revolutionize LLM reasoning:

September 12,2024

Learning to reason with LLMs

OpenAl ol reasoning model

&deepseek

R1: Incentivizing R ing Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

researchodeepseek. con

DeepSeek R1 reasoning model

28

Training models to “think” — Lean-STaR

Recap: Lean-STaR

e Training on formal code may be insufficient to learn the underlying
thought process needed to produce the code

e Learn to generate thoughts via reinforcement learning

29

This talk: Bridging Informal and Formal

1. Informal thoughts
2. Informal sketches

3. Towards research-level mathematics

30

I1: Informal sketches

Motivation: informal proofs and formal proofs

Informal proof
We ki h d(a, b) - ,b) =ab,
Prove that n is 70 heicg% jtzztogi ,(la 43‘ cm(a,b) =a
if ged(n, 40) = 10 and Thomm = 10- 280740 70,
lem(n, 40) = 280. o §

Statement

How would we write this as a formal proof?

31

Motivation: informal proofs and formal proofs

Informal proof

We know that ged(a, b) - lem(a, b) = ab,

hence 10 - 280 = n - 40.
Then n = 10 - 280/40 = 70,

Formal proof
have cl: “10*280 = n*40”
using assms
by (smt (z3) prod_gcd lcm nat)
then have c2: “n = 10%280/40"
by auto

écompleting the proof.

‘then show ?thesis

by auto

A proof with a high-level sketch and low-level proof steps.

32

Low-level provers: Sledgehammer

have cl: “10%280 = n*40”
have cl: “10%280 = n*40” | MEZIIMS Sl '
using assms | by (smt (z3) prod_gcd lcm nat)

Sledgehammer [Paulson 2010] calls out to external automated provers.

e First-order logic, higher-order logic, SMT

33

Low-level provers: Sledgehammer

Theorem ~* complex proof

Sledgehammer [Paulson 2010

Struggles due to the large search space of possible proofs

34

Idea: combine high-level and low-level provi

have cl: “10*280 = n*40”
using assms

High-Level by (smt (z3) prod gcd lcm nat) Low-Level
Prover Prover

@ =2

A

Idea: combine high-level (human, LLM) and low-level proving

35

Draft-Sketch-Prove

Draft, Sketch, Prove: Guiding Formal Theorem Provers with
Informal Proofs

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou

Jiacheng Liu, Wenda Li, Mateja Jamnik

Guillaume Lample, Yuhuai Wu

ICLR 2023 (Oral)

36

Draft, Sketch, Prove

Given informal theorem x;,

formal theorem xg

Informal proof

Statement
I Draf facdn = 1ang | Bl e lnle) =
. Draft y; ~ p(.|X/) lem(n, 4) = 28
’ ! Thenn=1-28/4=1,

showthatnis 7.
completing the proof. B

Human-written or LLM-generated draft

37

Draft, Sketch, Prove

Given informal theorem x;,
formal theorem xg

1. Draft y; ~ p(-|x1)
2. Sketch zr ~ p(-|xg, x1, y1)

Formal sketch
have cl: “1*28 = n*4”
using assms

Informal proof
We know that ged(a, b) - lem(a, b) = ab,

hence1-28 =n-4. <proof>
then have c2: “n = 1%28/4"
Thenn=1-28/4=17, <proof>

‘then show ?thesis
<proof>

completing the proof. B

LLM-generated sketch

37

Draft, Sketch, Prove

Given informal theorem x;,

formal theorem xg

Formal sketch 11T Verified formal proof

have cl: “1%*28 = n*4”" have cl: “1%28 = n*4”
using assms

using assms
1. Draft Y~ p(~|X/) <proof> by (smt (23) prod _gcd lcm nat)
then have c2: “n = 1%28/4" then have c2: “n = 1%28/4"
2. Sketch ze ~ p(-|xe, 1, 1) ’ <proof> by auto
then show ?thesis then show ?thesis
<proof> by auto

3. Prove yr = f(xr, zF)
Low-level prover (Sledgehammer) fills in the gaps

37

Draft-sketch-prove

Proof search

[B
r !

}

4
Theorem

38

Draft-sketch-prove

r
200+ ‘
@ |
o
o
a 150
é
a —— Human informal proof drafts
g 108 —— Minerva (540B) proof drafts
a —— Minerva (62B) proof drafts
H* —— Minerva (8B) proof drafts
5D 1 —— Codex proof drafts
0 20 40 60 80 100

trajectories sampled

Inference-time proof search scaling

38

Draft-sketch-prove

Statement: Prove that the fraction %’—; is irreducible for every natural number n.
Informal Proof (Minerva 62B):

We must show that ged(21n + 4, 14n + 3) = 1.

The Euclidean algorithm gives

2n+4=1-(14n+3)+Tn+1
Un+3=2.(Tn+1)+1.

Since ged(7n + 1,1) = 1, we have ged(21n + 4, 14n + 3) = 1.

Formal Proof:
theorem imo_1959_pl:
fixes n :: nat
shows "gcd (21#n + 4) (14*n + 3) = 1"
proof -
(* The Euclidean algorithm gives
21nt+4=1\cdot (14n+3) +7n+1
14n+3=2\cdot (Tn+1)+1. *)
have c0: "21*n + 4 = 1x(14*n + 3) + 7*n + 1"
by auto [ATP]
have cl: "14*n + 3 = 2% (7*n + 1) + 1" using c0
by auto [ATP]

 E— (* Since \gcd(7nt1,1)=1, we have \gcd(21n+4, 14nt3)=1. %)

then have "gcd (7*n + 1) 1 =1"
using cl
by auto [ATP]

then have "gcd (21#n + 4) (14#n + 3) = 1"
— using cl
by (smt (z3) BitM plus_one ab_semigroup_add_class.add_ac(1l)
add.assoc c0 gcd.commute ged_add2 ged_add_mult mult_numeral 1
numeral_One numeral_eq Suc numerals(l) semiring nom(3)) [ATP)
then ?thesis
using cl
by blast [ATP]

International Math Olympiad problem
38

Next: building a low-level prover for Lean

Recap:

e Draft-Sketch-Prove: generate high-level sketches and fill in gaps

e lIsabelle’'s Sledgehammer calls out to external provers to fill in gaps

39

Next: building a low-level prover for Lean

Recap:

e Draft-Sketch-Prove: generate high-level sketches and fill in gaps

e lIsabelle’'s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?

39

LeanHammer

Premise Selection for a Lean Hammer

Thomas Zhu, Joshua Clune
Jeremy Avigad, Albert Q. Jiang, Sean Welleck
Under Review 2025

40

A hammer pipeline

A standard hammer pipeline:

Goal to Prove
m:N
h:21m~2
21m

Select
Premises

— Translate ——

Proof

ATP ——Reconstruct— : Nat.Prime. dv§

Nat.prime_
h

41

A hammer pipeline

A standard hammer pipeline:

Goal to Prove Translate ATP Reconstruct Proof
m:N sele_Ct Lean-auto ® zipperposition Duper . Nat.Prime. dv{
h:2lmn2 Premises . Nat.prime_

210m Duper is an automat . h

Existing components:
e Translation: LeanAuto [Qian et al 2025]
e ATP: Zipperposition [Cruanes et al 2015]
e Reconstruction: Duper [Clune et al 2024]

41

A hammer pipeline

A standard hammer pipeline:

Select

Premises Proof

Goal to Prove

Nat.Prime. dv{
Nat.prime_
h

Our challenge:
e Premise selection

e Combine pieces to create LeanHammer

41

LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

Mathlib +

Goal to Prove
Local Premises

Premise 2 theorem Nat.prime_two

Premise 1 lemma Prime.dvd of dvd_pow - %

Premise 3 theorem Coprime.mul_add mul_ne_mul —

42

LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

Mathlib +

Goal to Prove
Local Premises

~— he2
—— |
="

Premise 2 theorem Nat.prime_two

Premise 1 lemma Prime.dvd of dvd_pow - %

Premise 3 theorem Coprime.mul_add mul_ne_mul —

e Transformer encoder embeds the state and candidate premises

42

LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

Mathlib + Goal to Prove
Local Premises 111
- 5 zJ I'm~2 -
—N . "
— " 21m

Premise 1 lemma Prime.dvd_of dvd_pow

Premise 2 theorem Nat.prime_two - % - _
Premise 3 theorem Coprime.mul_add mul_ne_mul — e _

e Transformer encoder embeds the state and candidate premises

e Contrastive loss on (state, {premise’ }, {premise™ }) examples

e Nuance in how to collect and format examples

42

LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Premise Tree Automated
Selector Search Theorem
Prover

s~tvC uls]~u'vC
1u[] veve)s

Tree search: Aesop [Limperg & From 2023]

43

LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Premise Tree Automated
Selector Search Theorem
Prover

s~tvC uls]~u'vC
mt] Wvevce)s

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp_all) using the premises

43

LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Premise Tree Automated
Selector Search Theorem
Prover

s~tvC uls]~u'vC
hqt] u'veve)e

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp_all) using the premises
Goes beyond the standard hammer pipeline!

43

LeanHammer

As a user, simply issue hammer at any step of a proof:

Try this:

t f_t HE\Y
wo_dvd_of_two_dvd_sq {m } Ty Dt

®h:21m~2):21m:=h

| - apply Nat.prime_t

ct h

LeanHammer in action

44

LeanHammer — Example

Demo: start with human-written proof sketch (from Mathematics in Lean)

theoren irrational sqrt two {m n :
m~2#2%xn”"2:=by
intro sqr_eq
have : 2 | m := by
sorry
obtain (k, meq) := dvd_iff_exists_eq_mul_left.mp this
have : 2 x (2 x k ~2) =2 %n "2 := by
sorry
have : 2 x k 2 =n " 2 := by
sorry
have : 2 | n := by
sorry
have : 2 | m.gcd n := by
sorry
have : 2 | 1 := by
sorry
sorry

N} (coprime_mn : m.Coprime n)

45

LeanHammer — Example

Demo: fill in the gaps (sorrys) with LeanHammer

¥ (coprime_mn ¢ m.Coprine n)

Human o

apply Lenma. two_dvd_of_two_dvd_sq

Written Rl AN e
4 eft.

(K, meq) := dvd_iff_exists_eq_mul
2% (2%k~2)=2xn"2

subst meq
simp_all only [dvd_mul_left, mul_eq_mul_left_iff, OfNat.ofNat_ne_zero, or_false]

(linarith)
subst meq
simp_all only [mul_eq mul_left_iff, OfNat.ofNat_ne_zero, or_false, dvd_mul_left]

subst meq

simp_all only [dvd_mul_left]
(hammerCore [1 [, dvd_nul_right, Nat.modEq_zero_iff_dvd, Nat.ModEq.synm, Nat.modEq_iff_dvd',

LEArf

add_le_mul, FrobeniusNumber, Nat.ModEq.trans,

Nat.Coprime.mul_add_mul_ne_mul, frobeniusNumber_pair,

no_target})

Nat.cast_mul,
Nat.Coprime.eq_one_of_dvd, Lemma. two_dvd_of_two_dvd_sq] {simpTarget

oprime_mr

subst meq
simp_all only [dvd_mul_left]

apply Nat.dvd_gcd

simp_all only [dvd_mul_left]
simp_all only
211

subst meq
[dvd_mul_left, Nat.dvd_one, OfNat.ofNat_ne_one]

simp_all onl

subst meq
simp_all only [Nat.dvd_one, OfNat.ofNat_ne_one]

sq, Nat.Coprime.dvd_of_dvd_mul_left, AddSubmonoid.mem_closure_pair, Nat.chineseRemainder_lt_mul,

46

LeanHammer — Quantitative results

Varying the premise selector within LEANHAMMER:

50

45 |- N 0o No premise selection
40 0o ReProver retriever
< 35 e On MePO
= iy B .
e) Al LEANHAMMER retriever
o 30 S e g ,
et o5 250 |a55ss B LEANHAMMER retriever U MePO
© — 250000 552525 — D .
=) 125550 0 Ground truth premises
“ zooy) feoore P
S 20 o a
o 700000 (222577
o | i
a 15 S Ams u
v
| i
10 [277777 227777 L
2w
| I
|
| Iy
5H 2% s =
| I
W
0 272277 7 277

I
Held-out mathlib theorems

a7

Sketching proofs and filling in the gaps

48

Sketching proofs and filling in the gaps

e Draft-Sketch-Prove (DSP)

48

Sketching proofs and filling in the gaps
e Draft-Sketch-Prove (DSP)

e LeanHammer

48

This talk: Bridging Informal and Formal

1. Informal thoughts
2. Informal provers

3. Towards research-level mathematics

49

I1l: Research-level mathematics

What does it look like to formalize research-level math?3

AT LV > math > aniv2311.05762
Mathematics > Number Theory. Theorem 7.2 (PFR)
2023 (), st revisea 12 1 CFn - oK1
" If A C Fj and |4 + A| < K|Al, then A can be covered by most 2K *? translates of a
On a conjecture of Marton subspace H of F1 with [H| < |A
W. T. Gowers, Ben Green, Freddie Manners, Terence Tao Proof »

Let U4 be the uniform distribution on A (which exists by Lemma 2.5), thus
H[U,] = log| A| by Lemma 2.7. By Lemma 2.3 and the fact that U4 + U 4 is supported
onA+ A H[Ujs + Uy < log|A + Al. By Definition 3.7, the doubling condition

|A+ Al < K|A| therefore gives

dU4;Us] < log K.

FJ such that

By Theorem 6.16, we may thus find a subspace H of

arXiv

Informal “Blueprint”

3 Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao
50

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/

What does it look like to formalize research-level math?3

Definitions Lemmas

== U
N/

Final theorem and its proof

wGroup 6] [Elenen Conntroup 6 2]
eEq G] {A : Set G} { 7
. ty A)
arXiv A+ A)) S K v H(Nat.card 1)) ¢
"""" at.card 1¢) s 2 % K A 12 A
Informal “Blueprint” Nat.card 1 5 Nat.card th A A c c + 1
Formal

Definitions, Theorems, Proofs

3 Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao

50

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/

Where can Al help?

As a start, can Al help with filling in small parts of the blueprint?

1/(P[X=s Y=yl) .

lemma entropy_cond_eq_sum (u : Measure Q) (y : T) :
HIX | Y «y; pl =3" x, negMulLog ((u[|Y « yl).map X {x}).toReal :=

— 777

51

Where can Al help? — Existing tools

vlimstep suggestions

tRSS-+ScT-RCcT:
hr h

Try this:

Send proof state +

doc context LLMLean Verified suggestions

LLMLean: https://github.com/cmu-I3/limlean

52

Where can Al help? — Existing tools

Local
........ v LLM
LLMLean &~
EYN S
Yen © Cloud
LLM AP

LLMLean: https://github.com/cmu-13/limlean

52

Where can Al help? — Existing tools

PFR > ForMathlib > Entropy > = Basic.lean > {} ProbabilityTheory

ProbabilityTheory
entropy

(hX : Measurable X) {u : Measure Q} [IsZeroOrPr

entropy X p = J x € FiniteRange.toFinset X, neg

entropy_eq_sum_finset (A := FiniteRange.toFinset

entropy_eq_sum_finiteRange'

[MeasurableSingle
[IsZeroOrProbabilityMeasure ul

[FiniteRange X]:
entropy X p = § x € FiniteRange.toFinset X, neg
entropy_eq_sum_finiteRange hX

HIX | Y=yl PIX=s | Y=yl log 1/(P[X=s |
entropy_cond_eq_sum (p : Measure Q) (y : T) :

[X | Yey;pl=3"x, negMullog ((pul]Y « y

i Type u_3

: MeasurableSpace Q
stt : MeasurableSpace S
105

Q=T
: Measure Q
0 T
HIX | Y ey ;pl=3" (x
{y}]) {x}).toReal.negMullLog

vLLMLean suggestions

Try this:
»

: S), ((map X ul]Y

LLMLean example on Polynomial Freiman Rusza Conjecture project

Where can Al help? — Benchmarking gap

Math competition problems

resmaTionat MarwemTicar Oumeao

A

Theorem to prove

e Self-contained

e Uses standard results

53

Where can Al help? — Benchmarking gap

Math competition problems Real projects

InremmaTionas Ma

Definitions Lemmas

_— S
N/

Theorem to prove

imo_1964_p1_2 (n : N|

sorry

yl).map X {x}).toReal :=

e Self-contained e Part of a project

[] I
Uses standard results e Uses new definitions and lemmas

53

Where can Al help? — Benchmarking gap

Math competition problems Real projects

T — Oumeao

Definitions Lemmas

_— S
N/

Theorem to prove

A

Theorem to prove

e Self-contained e Part of a project

[] e
Uses standard results e Uses new definitions and lemmas

e New Benchmark: miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck. /ICLR 2025 (Oral). 53

g Informal and Formal

1. Informal thoughts
e Training models to think informally
e Lean-STaR

2. Informal provers
e Sketching proofs and filling in the gaps

e Draft, Sketch, Prove
e LeanHammer

3. Towards research-level mathematics

e Assisting in research-level projects
e Practical tools
e MiniCTX

54

Collaborators on works in this talk (alphabetical by last name):

e Jeremy Avigad (CMU) e Wenda Li (Edinburgh)

e Joshua Clune (CMU) e Jiacheng Liu (Washington)

o Jiewen Hu (CMU) e Zhiging Sun (CMU, OpenAl)

e Mateja Jamnik (Cambridge) e Yuhuai (Tony) Wu (Google, X.ai)
e Albert Q. Jiang (Cambridge, Mistral) e Yiming Yang (CMU)

e Timothee Lacroix (Meta, Mistral) e Jin Peng Zhou (Cornell)

e Guillaume Lample (Meta, Mistral) e Thomas Zhu (CMU)

e Haohan Lin (Tsinghua)

Sean Welleck
CMU School of Computer Science
Learning, Language, and Logic (L3) Lab
www.wellecks.com

wellecks@cmu.edu
55

	I: Informal thoughts
	II: Informal sketches
	III: Research-level mathematics

