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“Informal” mathematics

Math as raw data (text, images, ...)

• Flexible

• Widely used

• Difficult to check

Language model solution.
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Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof Math as source code.
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Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof
Theorem proving languages

3



Formal mathematics (Demo)

If R ⊆ S and S ⊆ T then R ⊆ T
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Formal math for mathematics

Growing use in mathematics:

Terence Tao’s Lean formalization project (October 2023)

• New form of collaboration: break a big problem into multiple pieces
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Formal math for AI/LLMs
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LLMs ∩ formal math

Rapid progress in methods based on language models:

miniF2F benchmark performance, 2022-2024
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LLMs ∩ formal math

Generated International Math Olympiad solution in Lean

(DeepSeek Prover-1.5B, Xin et al 2024)
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LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and LLMs always use formal math?

9



LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and LLMs always use formal math?

9



Key challenge: the informal-formal gap

Informal ideas, intuitions, and even proofs are difficult to express formally:

• Each step of reasoning needs to be specified in detail

• Requires a deep knowledge of the formal system
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Bridging Informal and Formal Mathematical Reasoning

This talk: Bridging Informal and Formal Mathematical Reasoning
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This talk: Bridging Informal and Formal Mathematical Reasoning

1. Informal thoughts

2. Informal sketches

3. Towards research-level mathematics
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I: Informal thoughts



1. Training models to “think” — Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck

ICLR 2025 (Spotlight)
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1. Training models to “think” — Neural theorem proving

Neural theorem proving

• Math as checkable code

• Proof: sequence of (state, step)
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1. Training models to “think” — Lean-STaR

Can we train a model to “think” before each step of formal reasoning?
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1. Training models to “think” — Lean-STaR

Why?

• Plan proof steps

• Diversify search space

• More tokens can give more computational capacity
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1. Training models to “think” — Lean-STaR

Lean-STaR (Self-taught reasoner1)

Learn to generate thoughts via reinforcement learning

1. Initialization

2. Reinforcement learning

1Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022
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1. Training models to “think” — Lean-STaR

1. Initialization
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1. Training models to “think” — Lean-STaR

1. Initialization
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1. Training models to “think” — Lean-STaR

2: Reinforcement learning
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Training models to “think” — Lean-STaR

Algorithm: train on the successful proofs, and repeat:2

• Collect (state, thought, tactic) from successful proofs

• Train a new model p1θ(thought, tactic|state)
• Generate proofs

• ...

2I.e. Expert Iteration [Polu et al 2022], Rest-EM [Singh et al 2024]
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Training models to “think” — Lean-STaR

• miniF2F: competition problems (AMC, AIME, IMO)
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Training models to “think” — Lean-STaR

miniF2F test
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Training models to “think” — Lean-STaR

Increasing the search budget is more effective with thoughts
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Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR
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Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR
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Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in DeepSeek Prover 1.5
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Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in Kimina Prover (April 14 2025)
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Training models to “think” — After Lean-STaR

More broadly, reasoning models that generate long chains-of-thought

have subsequently begun to revolutionize LLM reasoning:

OpenAI o1 reasoning model DeepSeek R1 reasoning model
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Training models to “think” — Lean-STaR

Recap: Lean-STaR

• Training on formal code may be insufficient to learn the underlying

thought process needed to produce the code

• Learn to generate thoughts via reinforcement learning
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This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal sketches

3. Towards research-level mathematics
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II: Informal sketches



Motivation: informal proofs and formal proofs

How would we write this as a formal proof?
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Motivation: informal proofs and formal proofs

A proof with a high-level sketch and low-level proof steps.
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Low-level provers: Sledgehammer

Sledgehammer [Paulson 2010] calls out to external automated provers.

• First-order logic, higher-order logic, SMT
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Low-level provers: Sledgehammer

Struggles due to the large search space of possible proofs
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Idea: combine high-level and low-level proving

Idea: combine high-level (human, LLM) and low-level proving
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Draft-Sketch-Prove

Draft, Sketch, Prove: Guiding Formal Theorem Provers with

Informal Proofs

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou

Jiacheng Liu, Wenda Li, Mateja Jamnik

Guillaume Lample, Yuhuai Wu

ICLR 2023 (Oral)
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Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Human-written or LLM-generated draft

37



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

LLM-generated sketch
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Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Low-level prover (Sledgehammer) fills in the gaps
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Draft-sketch-prove
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Draft-sketch-prove

Inference-time proof search scaling
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Draft-sketch-prove

International Math Olympiad problem
38



Next: building a low-level prover for Lean

Recap:

• Draft-Sketch-Prove: generate high-level sketches and fill in gaps

• Isabelle’s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?
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LeanHammer

Premise Selection for a Lean Hammer

Thomas Zhu, Joshua Clune

Jeremy Avigad, Albert Q. Jiang, Sean Welleck

Under Review 2025
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A hammer pipeline

A standard hammer pipeline:
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A hammer pipeline

A standard hammer pipeline:

Existing components:

• Translation: LeanAuto [Qian et al 2025]

• ATP: Zipperposition [Cruanes et al 2015]

• Reconstruction: Duper [Clune et al 2024]
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A hammer pipeline

A standard hammer pipeline:

Our challenge:

• Premise selection

• Combine pieces to create LeanHammer
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LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples
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LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!
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LeanHammer

As a user, simply issue hammer at any step of a proof:

LeanHammer in action
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LeanHammer — Example

Demo: start with human-written proof sketch (from Mathematics in Lean)
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LeanHammer — Example

Demo: fill in the gaps (sorrys) with LeanHammer
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LeanHammer — Quantitative results

Varying the premise selector within LeanHammer:

Held-out mathlib theorems
0
5
10
15
20
25
30
35
40
45
50

P
ro
of

ra
te

(%
)

No premise selection

ReProver retriever

MePO

LeanHammer retriever

LeanHammer retriever ∪ MePO

Ground truth premises
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Recap

Sketching proofs and filling in the gaps

• Draft-Sketch-Prove (DSP)

• LeanHammer
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This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal provers

3. Towards research-level mathematics
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III: Research-level mathematics



What does it look like to formalize research-level math?3

3Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao
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Where can AI help?

As a start, can AI help with filling in small parts of the blueprint?
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Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean
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Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean
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Where can AI help? — Existing tools

LLMLean example on Polynomial Freiman Rusza Conjecture project
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Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results
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Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results
• Part of a project

• Uses new definitions and lemmas

• New Benchmark: miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck. ICLR 2025 (Oral).
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This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Towards research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX
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Thank you!

Collaborators on works in this talk (alphabetical by last name):

• Jeremy Avigad (CMU)

• Joshua Clune (CMU)

• Jiewen Hu (CMU)

• Mateja Jamnik (Cambridge)

• Albert Q. Jiang (Cambridge, Mistral)

• Timothee Lacroix (Meta, Mistral)

• Guillaume Lample (Meta, Mistral)

• Haohan Lin (Tsinghua)

• Wenda Li (Edinburgh)

• Jiacheng Liu (Washington)

• Zhiqing Sun (CMU, OpenAI)

• Yuhuai (Tony) Wu (Google, X.ai)

• Yiming Yang (CMU)

• Jin Peng Zhou (Cornell)

• Thomas Zhu (CMU)

Sean Welleck

CMU School of Computer Science

Learning, Language, and Logic (L3) Lab

www.wellecks.com

wellecks@cmu.edu
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