Foundation models and large language models (LLMs)

Platform for sequence generation

• Summarize documents
• Generate code from a screenshot
• ...

ChatGPT

Plan a trip to explore the nightlife scene in Bangkok
Come up with concepts for a retro-style arcade game
Tell me a fun fact about the Roman Empire
Suggest fun activities for a family of 4 to do indoors on a rainy day

Send a message

ChatGPT can make mistakes. Consider checking important information.
Foundation models and large language models (LLMs)

Core idea:
• Collect diverse data
• Train generative model
• Adapt to tasks (e.g., prompting)
Foundation models in expert domains

LLMs in expert domains

- Finance
- Medicine
- Mathematics

\[\text{See, e.g. Harvard New Technologies in Mathematics: 1/2021 (Christian Szegedy), 3/2022 (Stan Polu), 10/2022 (Guy Gur-Ari), 10/2023 (Alex Gu), 12/2023 (Katherine Collins), ...;}\]
Foundation models in expert domains

LLMs in expert domains

- Finance
- Medicine
- **Mathematics**
 - Solve problems
 - Open-ended dialogue
 - Help generate verified proofs
 - ...

1See, e.g. Harvard New Technologies in Mathematics: 1/2021 (Christian Szegedy), 3/2022 (Stan Polu), 10/2022 (Guy Gur-Ari), 10/2023 (Alex Gu), 12/2023 (Katherine Collins), ...;
“Informal” mathematics

Math as raw data (text, images, ...)

• Flexible
• Useful (e.g., in education)
• No correctness guarantees

Figure 1: Language model solution.
Formal mathematics

Math as **source code**

- Write a specification (e.g., 1+1=2)
- Write a proof
- Automatically checked
 - Code compiles \equiv correct proof

![Math as source code](image)

Figure 2: Math as source code.
Formal mathematics

Math as **source code**
- Write a specification (e.g., 1+1=2)
- Write a proof
- Automatically checked
 - Code compiles \equiv correct proof

Figure 3: Theorem proving languages

Lean Isabelle Coq
If $R \subseteq S$ and $S \subseteq T$ then $R \subseteq T$
How is formal math used in practice?

Growing use in mathematics:

Terence Tao
@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem (Theorem 1.3) in my recent paper arxiv.org/abs/2310.05328 :

Figure 4: Terence Tao’s Lean formalization project (October 2023)
How is formal math used in practice?

Growing use in mathematics:

Terence Tao
@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem (Theorem 1.3) in my recent paper arxiv.org/abs/2310.05328

Figure 4: Terence Tao’s Lean formalization project (October 2023)

- **Lean Mathlib** project: 1+ million lines of code, 300+ contributors
- **Courses** at CMU, Imperial College London, Fordham, JHU, ...
- **New journal (2024):** _Annals of Formalized Mathematics_
How is formal math used in practice?

Why?¹

- Collaboration
- Instant feedback
- Correctness guarantees
- ...

¹See e.g., *Mathematics and the formal turn*, AFM Aims and Scope
Why is AI ∩ formal math important?

LLMs for formal math

- Automate proofs
- Translate informal to formal
- Suggest strategies
- ...

Why is AI ∩ formal math important?

Formal math for LLMs

• Verifiable
 • Prevent incorrect math and code generation
 • Feedback signal for learning

And still far from being "solved" (April 2024)...

Formal math for LLMs

• **Verifiable**
 • Prevent incorrect math and code generation
 • Feedback signal for learning

• **Tests reasoning**
 • From easy: $1+1 = 2$
 • To hard: Fermat’s Last Theorem
Why is AI ∩ formal math important?

Formal math for LLMs

- **Verifiable**
 - Prevent incorrect math and code generation
 - Feedback signal for learning

- **Tests reasoning**
 - From easy: 1+1 = 2
 - To hard: Fermat’s Last Theorem

- **Complementary tools**
 - Computer algebra, SAT/SMT solvers, ...
 - Rule-based automation, ...

And still far from being “solved” (April 2024)...
Generative Language Modeling for Automated Theorem Proving

Stanislas Polu
OpenAI
spolu@openai.com

Ilya Sutskever
OpenAI
ilyasu@openai.com

Figure 5: gpt-f (2020)
“Any ML-based system is impressive if it can find many shorter proofs than the ones we already have. Nice work.”

“The shorter proof is easier to translate. It’s more symmetric in that it treats A and B identically. It’s philosophically more concise in that it doesn’t rely on the existence of a universal class of all sets.”

Figure 6: gpt-f (2020)
Terence Tao
@tao@mathstodon.xyz

Finished formalizing in #Lean4 the proof of an actual new theorem (Theorem 1.3) in my recent paper arxiv.org/abs/2310.05328:

The ability of Github copilot to correctly anticipate multiple lines of code for various routine verifications, and inferring the direction I want to go in from clues such as the names I am giving the theorems, continues to be uncanny.

Figure 7: Terence Tao’s Lean formalization project (October 2023)
1. **Intro: Foundation models \cap mathematics**
 - Informal and formal mathematics
 - Why is formal mathematics important?

2. **Part I: Build a LLM formal theorem proving tool**
 - Data, training, proof search, evaluation, tool

3. **Part II: Leveraging *informal* mathematical data**
 - Via foundation model
 - Via translation
1. Intro: Foundation models ∩ mathematics
 - Informal and formal mathematics
 - Why is formal mathematics important?

2. Part I: Build a LLM formal theorem proving tool
 - Data, training, proof search, evaluation, tool

3. Part II: Leveraging informal mathematical data
 - Via foundation model
 - Via translation
PART I:
Build a [L]LM proving tool
Build a [L]LM proving tool

Interactive notebooks and code: github.com/cmu-l3(ntptutorial-II

<table>
<thead>
<tr>
<th>Topic</th>
<th>Notebook</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Intro</td>
<td>notebook</td>
</tr>
<tr>
<td>1. Data</td>
<td>notebook</td>
</tr>
<tr>
<td>2. Learning</td>
<td>notebook</td>
</tr>
<tr>
<td>3. Proof Search</td>
<td>notebook</td>
</tr>
<tr>
<td>4. Evaluation</td>
<td>notebook</td>
</tr>
<tr>
<td>5. Context</td>
<td>notebook</td>
</tr>
<tr>
<td>6. LLLLean tool</td>
<td>notebook</td>
</tr>
</tbody>
</table>

2Update of Tutorial on neural theorem proving, IJCAI 2023, github.com/wellecks/ntptutorial
Build a [L]LM proving tool

Datasets and models on Huggingface: https://huggingface.co/l3lab

Artifacts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Huggingface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data: mathlib extractions</td>
<td>l3lab/ntp-mathlib</td>
</tr>
<tr>
<td>Data: instructions (state-tactic)</td>
<td>l3lab/ntp-mathlib-instruct-st</td>
</tr>
<tr>
<td>Data: instructions (+context)</td>
<td>l3lab/ntp-mathlib-instruct-ctx</td>
</tr>
<tr>
<td>Model: state-tactic</td>
<td>l3lab/ntp-mathlib-st-deepseek-coder-1.3b</td>
</tr>
<tr>
<td>Model: +context</td>
<td>l3lab/ntp-mathlib-context-deepseek-coder-1.3b</td>
</tr>
</tbody>
</table>

Update of Tutorial on neural theorem proving, IJCAI 2023, github.com/wellecks/ntptutorial
Build a [L]LM proving tool

Send proof state + doc context

LLMLean

Verified suggestions

example : R ⊆ S → S ⊆ T → R ⊆ T := by
intro hr hs
llmstep

Try this:
- exact hr.trans hs
- exact fun x hx ⇒ hs (hr hx)
- intro x hx

4Update of Tutorial on neural theorem proving, IJCAI 2023, github.com/wellecks/ntptutorial
Next-step (tactic) prediction

- Language model suggests next-proof-steps
- Generate a full proof via tree search

\[1\text{E.g., } [\text{Polu & Sutskever 2020}], [\text{Han et al 2021}], [\text{Jiang et al 2022}], [\text{Yang et al 2023}]\]
• Model: $p_\theta(y|x; D)$
 • y: output sequence
 • x: input sequence
 • θ: parameters (e.g., transformer)
 • D: dataset
Language models

• Model: $p_{\theta}(y|x; \mathcal{D})$
 - y: output sequence
 - x: input sequence
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset

• Learning:
 - $\arg \max_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$
Language models

- **Model:** $p_\theta(y|x; \mathcal{D})$
 - y: output sequence
 - x: input sequence
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset

- **Learning:**
 - $\arg\max_\theta \sum_{y \in \mathcal{D}} \log p_\theta(y)$
Language models

- Model: $p_{\theta}(y|x; \mathcal{D})$
 - y: output sequence
 - x: input sequence
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset
- Learning:
 - $\arg \max_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$
- Inference:
 - $y = f(p_{\theta}(\cdot|x))$
 - f: e.g., sampling
Problem setup

Proof: sequence of (state, step)

- \((x_0, y_0), \ldots, (x_T, y_T)\)
- \(x_t\): proof state from Lean
- \(y_t\): proof step ("tactic")
Proof: sequence of (state, step)

- \((x_0, y_0), \ldots, (x_T, y_T)\)
- \(x_t\): proof state from Lean
- \(y_t\): proof step (“tactic”)
Problem setup

Proof: sequence of (state, step)

- \((x_0, y_0), \ldots, (x_T, y_T)\)
- \(x_t\): proof state from Lean
- \(y_t\): proof step (“tactic”)

Idea: train language model \(p_\theta(y_t|x_t)\) on a dataset of (state, step) pairs
Problem setup

Proof: sequence of (state, step)

- \((x_0, y_0), \ldots, (x_T, y_T)\)
- \(x_t\): proof state from Lean
- \(y_t\): proof step ("tactic")

...then use the model + tree search to prove full theorems
1. Data

- Extract (state, tactic) pairs from Lean projects. Tools:
 - `ntp-training-data` (this tutorial)\(^5\)
 - Lean Dojo [2]

\[D = \{ (x_t, y_t) \} \]

\(^5\)Based on github.com/semorrison/lean-training-data
1. Data (ntp-training-data)

- Format each (state, tactic) pair as (prompt, completion) example:

```lean
/- You are proving a theorem in Lean 4.
You are given the following information:
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof. Put the next tactic inside [TAC]...[/TAC]

/-
[STATE]
m n : ℕ
h : Nat.Coprime m n
⊢ Nat.gcd m n = 1
[/STATE]
[TAC]
```

Prompt:
Completion: `rw [Nat.Coprime] at h`

Mathlib gives a dataset of $\approx 300,000$ examples
1. Data (ntp-training-data)

Hugging Face

Datasets:

<table>
<thead>
<tr>
<th>Dataset card</th>
<th>Viewer</th>
<th>Files and versions</th>
<th>Community</th>
<th>Settings</th>
</tr>
</thead>
</table>

Dataset Viewer

| split | train | 291k rows |

<table>
<thead>
<tr>
<th>task</th>
<th>prompt</th>
<th>completion</th>
<th>metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>string</td>
<td>string</td>
<td>dict</td>
</tr>
<tr>
<td>classes</td>
<td>lengths</td>
<td>lengths</td>
<td></td>
</tr>
<tr>
<td>1 value</td>
<td>259</td>
<td>159k</td>
<td></td>
</tr>
<tr>
<td>tactic_predition</td>
<td>/* You are proving a theorem in Lean 4. You are given th...</td>
<td>apply G.mk_eq [/TAC]</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: Data on Huggingface

[NOTEBOOK DEMO]
2. Learning

- Standard supervised learning on \mathcal{D}:

$$\arg \max_{\theta} \sum_{(x_t, y_t) \in \mathcal{D}} \log p_{\theta}(y_t | x_t)$$
Figure 9: Trained tutorial model on Huggingface

[NOTEBOOK DEMO]
3. Proof search

- Use generator $p_\theta(y_t|x_t)$ to generate a full proof y_1, \ldots, y_T
- Standard approach: Best-first search
3. Proof search | Best-first search

Figure 10: Best-first search

\[\frac{1}{Z} \sum_{t} \log p_{\theta}(y_t|x_t) \]
3. Proof search | Best-first search

[NOTEBOOK DEMO]
4. Evaluation

- Proof search on held-out theorems from the training distribution
4. Evaluation | benchmarks

Benchmarks evaluate problems drawn from a different distribution:

- **miniF2F [3]**: competition problems (AMC, AIME, IMO)

Problem 1959 IMO Problems/Problem 1

Prove that the fraction \(\frac{21n + 4}{14n + 3} \) is irreducible for every natural number \(n \).

```lean
theorem imo_1959_p1
(\( n : \mathbb{N} \))
(\( \theta : 0 < n \)):
  nat.gcd (21*n + 4) (14*n + 3) = 1 :=
begin
```
4. Evaluation

Figure 11: Proof search performance on miniF2F theorems. The model we trained in the tutorial notebooks gets 29.1% (71/244) on miniF2F test.
4. Evaluation

\begin{verbatim}
-- from mathlib:
theorem prod_mono
\{ s_1 s_2 : Subsemiring R \} \{ t_1 t_2 : Subsemiring S \} (hs : s_1 \leq s_2)
(t : t_1 \leq t_2) : s_1.prod t_1 \leq s_2.prod t_2 := by
 intro x hx
 simp_rw [Subsemiring.mem_prod]
 cases' x with x_fst x_snd
 exact ⟨hs hx.1, ht hx.2⟩

-- from miniF2F:
theorem mathd_algebra_159 (b : ℝ) (f : ℝ → ℝ)
(h₀ : ∀ x, f x = 3*x^4 - 7*x^3 + 2*x^2 - b*x + 1)
(h₁ : f 1 = 1) : b = -2 := by
 apply eq_neg_of_add_eq_zero_left
 rw [h₀] at h₁
 norm_num at h₁
 linarith
\end{verbatim}

Figure 12: Generated proofs
4. Evaluation

[NOTEBOOK DEMO]
Real theorem proving uses context (e.g., new definitions, lemmas) [1]:

\[
\text{variable } \{ \Omega : \text{Type}\} \text{[Fintype } \Omega] \\
\text{structure my_object } (\Omega : \text{Type}\} \text{[Fintype } \Omega] := \\
(f : \Omega \rightarrow \mathbb{R}) \\
(\text{cool_property } : \forall x : \Omega, 0 \leq f x) \\
\text{theorem my_object_sum_nonneg } (o1 \ o2 : \text{my_object } \Omega) : o1.f + o2.f \geq 0 := \text{by} \\
\quad \text{apply add_nonneg} \\
\quad \quad \text{apply } o1.\text{cool_property} \\
\quad \quad \text{apply } o2.\text{cool_property}
\]

Figure 13: The theorem uses a newly defined *my_object* and *cool_property* [1].

A model trained on (state, tactic) examples does not access context outside of its training set.
Train a context-dependent model:

\[p_\theta(y_t|x_t, c_t), \]

(1)

e.g., where \(c \) is the preceding file contents.
5. Extensions: context

/* You are proving a theorem in Lean 4.
You are given the following information:
- The file contents up to the current tactic, inside [CTX]...[/CTX]
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]

*/
[CTX]
import Mathlib.Data.Nat.Prime

theorem test_thm (m n : Nat) (h : m.Coprime n) : m.gcd n = 1 := by

[/CTX]
[STATE]
m n : N
h : Nat.Coprime m n
\- Nat.gcd m n = 1
[/STATE]
[TAC]

rw [Nat.Coprime] at h
[/TAC]
LLMLEAN: tools that integrate LLMs into the Lean proof assistant

Figure 14: github.com/cmu-l3/llmlean
6. Integrating LLMs and Lean

Example: Verified *llmstep*\(^7\) suggestions on a MacBook Pro:

![Diagram showing integration of LLMs and Lean]

Figure 15: github.com/cmu-l3/llmlean

\[^7\text{LLMstep: LLM proofstep suggestions in Lean [Welleck & Saha 2023]}\]
Recap

• Train next-tactic generators, $p_\theta(y_t|x_t, c_t)$
• Prove theorems with a best-first tree search
• Data, Learning, Search, Evaluation, LLMLEAN tool
Check out the notebooks, code, data, and models!

 - Data: NTP-TRAINING-DATA
 - Proof search: NTP-INTERACT
 - Fine-tuning: NTP-TUNE
- Datasets and models:
 - https://huggingface.co/l3lab
Extensions (formal-to-formal tactic generation)

Active research area with many extensions and related works:

Reinforcement learning
- Expert Iteration [Polu et al 2022]
- Thor with Expert Iteration [Wu et al 2022]

Search algorithms
- Hypertree Proof Search [Lample et al 2022]
- DT-Solver [Wang et al 2023]

Retrieval
- Reprover [Yang et al 2023]

Integrating symbolic provers
- Thor [Jiang et al 2022]

LLM agents
- COPRA [Thakur et al 2024]

Benchmarks
- MINIF2F [Zheng et al 2021]
- PROOFNET [Azerbayev et al 2023]

Data extraction/interaction
- PISA [Jiang et al 2021] (Isabelle)
- PACT [Han et al 2021] (Lean 3)
- LEAN-TRAINING-DATA [Morrison 2023]
- NTP-TRAINING-DATA (this tutorial)
- Lean Dojo [Yang et al 2023]

Tools
- LLMLEAN/LLMSTEP [Welleck & Saha 2023]
- Lean Copilot [Song et al 2023]

Non-exhaustive list; also more extensions in the next section!
1. Intro: Foundation models ∩ mathematics
 - Informal and formal mathematics
 - Why is formal mathematics important?

2. Part I: Build a LLM formal theorem proving tool
 - Data, training, proof search, evaluation, tool

3. Part II: Leveraging *informal* mathematical data
 - Via foundation model
 - Via translation and guidance
PART II: Leveraging *informal* mathematical data
Leveraging *informal* mathematical data

- Previous: train a model purely on formal data
Leveraging *informal* mathematical data

- *Previous*: train a model purely on formal data
- *Next*: use *informal* mathematical data
 - Latex proofs
 - Math textbooks, papers, websites, ...
 - Conversations, ...
Why leverage informal data?

1. Data scarcity
 - Lean: 300 million tokens
 - Arxiv: 29 billion tokens
 - General web data: > 5 trillion tokens
Why leverage informal data?

1. Data scarcity
 - Lean: 300 million tokens
 - Arxiv: 29 billion tokens
 - General web data: > 5 trillion tokens

2. Guiding search
 - Informal proofs can help cut down the space of possible proofs
Leveraging *informal* mathematical data

Why leverage informal data?

1. Data scarcity
 - Lean: 300 million tokens
 - Arxiv: 29 billion tokens
 - General web data: > 5 trillion tokens
 → *transfer knowledge by adapting a generalist model to mathematical data*

2. Guiding search
 - Informal proofs can help cut down the space of possible proofs
Recipe for adapting a language model to mathematical data:

- Collect high-quality, diverse math-related corpus, PROOFPILE II
- Continue pretraining a base model (e.g., Code LLama) on PROOFPILE II

8Llemma: an open language model for mathematics
Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer, Albert Q. Jiang, Jia Deng, Stella Biderman, Sean Welleck
Figure 16: LLEMA improves with a modest amount of math-specific compute
Proofpile II: code + web data + Arxiv papers

- **ALGEBRAICSTACK** – 11B tokens from 17 programming languages
- 1.5B tokens of formal math
- Extracted Lean and Isabelle goal states

![Figure 17: Lean code (left) and goal state (right)](image)
• 14.7 billion tokens of math-related web data

Figure 18: OpenWebMath pipeline.

9OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text. Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, Jimmy Ba
Traditional proof search: \(p_\theta(\text{next-tactic}|\text{state}) \) + best-first search.

- We implement a *few-shot* version by providing LLEMMA with 3 \((\text{state, next-tactic})\) examples in its prompt.
Figure 19: Few-shot proving in Lean with LLEMMA
LLEMMA on your laptop with LLMLEAN

Send proof state + doc context

Integrate Llemma locally via ollama

LLMLean

Verified suggestions

DEMO

10https://github.com/cmu-l3/llmlean, based on **LLMstep: LLM proofstep suggestions in Lean.**
Sean Welleck & Rahul Saha, Neurips Math+AI 2023
Recap

- Leverage informal data by pretraining + adaptation to diverse mathematical data
 - LLEMMA: 7B and 34B CodeLLama further trained on PROOFPILE II

- Open platform for research:
 - Code/Models/Data: https://github.com/EleutherAI/math-lm
Leveraging *informal* mathematical data

Why leverage informal data?

1. Data scarcity

2. Guiding search
 - Informal proofs can help cut down the space of possible proofs
Given informal theorem \(x_I \),
formal theorem \(x_F \)

1. Draft \(y_I \sim p(\cdot | x_I) \)
Given informal theorem x_I, formal theorem x_F

1. Draft $y_I \sim p(\cdot | x_I)$
2. Sketch $z_F \sim p(\cdot | x_F, x_I, y_I)$

Draft, Sketch, Prove: Guiding Formal Theorem Provers with Informal Proofs
Jiang, Welleck, Zhou, Lacroix, Liu, Li, Jamnik, Lample, Wu. ICLR 2023
Given informal theorem x_I, formal theorem x_F

1. Draft $y_I \sim p(\cdot | x_I)$
2. Sketch $z_F \sim p(\cdot | x_F, x_I, y_I)$
3. Prove $y_F = f(x_F, z_F)$

Figure 20: “Classical” prover Sledgehammer

Draft, Sketch, Prove: Guiding Formal Theorem Provers with Informal Proofs
Jiang, Welleck, Zhou, Lacroix, Liu, Li, Jamnik, Lample, Wu. ICLR 2023
Figure 21: Proof search
Figure 22: Proof search scaling
Statement: Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number n.

Informal Proof (Minerva 62B):
We must show that $\gcd(21n + 4, 14n + 3) = 1$.
The Euclidean algorithm gives

$21n + 4 = 1 \cdot (14n + 3) + 7n + 1$
$14n + 3 = 2 \cdot (7n + 1) + 1$.

Since $\gcd(7n + 1, 1) = 1$, we have $\gcd(21n + 4, 14n + 3) = 1$.

Formal Proof:

```plaintext
theorem imo_1959_p1:
  fixes n :: nat
  shows "gcd (21*n + 4) (14*n + 3) = 1"

proof -
  (* The Euclidean algorithm gives
  21n+4=1\cdot(14n+3)+7n+1
  14n+3=2\cdot(7n+1)+1. *)
  have c0: "21*n + 4 = 1*(14*n + 3) + 7*n + 1"
    by auto [A TP]
  have c1: "14*n + 3 = 2*(7*n + 1) + 1" using c0
    by auto [A TP]
  (* Since \(\gcd(7n+1,1)=1\), we have \(\gcd(21n+4,14n+3)=1\). *)
  then have "gcd (7*n + 1) 1 = 1"
    using c1
    by auto [A TP]
  then have "gcd (21*n + 4) (14*n + 3) = 1"
    using c1
    by (smt (z3) BitM_plus_one ab_semigroup_add_class.add_ac(1)
      add.assoc c0 gcd.commute gcd_add2 gcd_add_mult mult_numeral_1
      numeral_One numeral_eq_Suc numerals(1) semiring_norm(3)) [A TP]
  then show ?thesis
    using c1
    by blast [A TP]
qed
```

Figure 23: International Math Olympiad problem
Why leverage informal data?

1. Data scarcity
 • Adapt a foundation model to “all” mathematical data

2. Guiding search
 • Informal proofs can help cut down the space of possible proofs
Figure 24: Lego Prover

Lego-Prover: Neural Theorem Proving with Growing Libraries

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Xiaodan Liang, ICLR 2024 (Oral)
Extensions

Figure 25: Lego Prover results

<table>
<thead>
<tr>
<th></th>
<th>LLM</th>
<th>miniF2F-valid</th>
<th>miniF2F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baselines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thor (Jiang et al., 2022a)</td>
<td>-</td>
<td>28.3%</td>
<td>29.9%</td>
</tr>
<tr>
<td>Thor + expert iteration (Wu et al., 2022)</td>
<td>Codex</td>
<td>37.3%</td>
<td>35.2%</td>
</tr>
<tr>
<td>Draft, sketch, and Prove (Jiang et al., 2022b)</td>
<td>Codex</td>
<td>42.6%</td>
<td>39.3%</td>
</tr>
<tr>
<td>Subgoal-Learning (Zhao et al., 2023)</td>
<td>ChatGPT</td>
<td>48.0%</td>
<td>45.5%</td>
</tr>
<tr>
<td>Ours (100 attempts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGO-Prover (model informal proof)</td>
<td>ChatGPT</td>
<td>52.0%</td>
<td>45.5%</td>
</tr>
<tr>
<td>LEGO-Prover (human informal proof)</td>
<td>ChatGPT</td>
<td>55.3%</td>
<td>50.0%</td>
</tr>
<tr>
<td>LEGO-Prover*</td>
<td>ChatGPT</td>
<td>57.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

12 Lego-Prover: Neural Theorem Proving with Growing Libraries
Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Xiaodan Liang, ICLR 2024 (Oral)
Extensions and related (leveraging informal data)

Active research area with many extensions and related works:

Math foundation models

- MINERVA [Lewkowycz et al 2022] (inaccessible)
- LLEMA [Azerbayev et al 2023]
- INTERNLM-MATH [Ying et al 2024]
- DEEPSEEK-MATH [Shao et al 2024]

Informal-to-formal translation and guidance

- Statements [Wu et al 2022]
- Verifying informal (DTV) [Zhou et al 2024]
- LLM Agent (COPRA) [Thakur et al 2024]
- LegoProver [Wang et al 2024]

Tools/case studies

- Codex autoformalization [Agrawal 2022]

Informal+formal benchmarks

- MINIF2F+INFORMAL [Jiang et al 2023]
- PROOFNET [Azerbayev et al 2023]
- MUSTARD [Huang et al 2024]

Data

- NATURALPROOFS-GEN [Welleck et al 2022]
- MMA [Jiang et al 2024]
- OpenWebMath [Paster et al 2023]
- Proofpile-II [Azerbayev et al 2023]

Other tutorials

- Neural theorem proving, IJCAI 2023 github.com/wellecks/ntptutorial
- ML for Theorem Proving, Neurips 2023 machine-learning-for-theorem-proving.github.io

Non-exhaustive list!
1. Intro: Foundation models ∩ mathematics
 • Informal and formal mathematics
 • Why is formal mathematics important?

2. Part I: Build a LLM formal theorem proving tool
 • Data, training, proof search, evaluation, tool

3. Part II: Leveraging *informal* mathematical data
 • Via foundation model
 • Via translation and guidance
Thank you!

Collaborators on works in this tutorial (alphabetical by last name):

- Zhangir Azerbayev (Princeton)
- Stella Biderman (Eleuther)
- Jia Deng (Princeton)
- Marco Dos Santos (Cambridge)
- Jiewen Hu (CMU)
- Mateja Jamnik (Cambridge)
- Albert Jiang (Cambridge, Mistral)
- Timothee Lacroix (Mistral)
- Guillaume Lample (Mistral)
- Wenda Li (Edinburgh)
- Jiacheng Liu (Washington)
- Stephen McAleer (CMU)
- Keiran Paster (Toronto)
- Rahul Saha (Independent)
- Hailey Schoelkopf (Eleuther)
- Yuhuai (Tony) Wu (X.ai)
- Jin Zhou (Cornell)

https://github.com/cmu-l3/ntptutorial-II

https://huggingface.co/l3lab

Sean Welleck (CMU)
Learning, Language, and Logic (L3) Lab
S. Welleck and R. Saha.
Llmstep: Llm proofstep suggestions in lean.
ArXiv, abs/2310.18457, 2023.

K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger, and A. Anandkumar.
LeanDojo: Theorem proving with retrieval-augmented language models.

K. Zheng, J. M. Han, and S. Polu.
minif2f: a cross-system benchmark for formal olympiad-level mathematics.
In *International Conference on Learning Representations, 2022.*