
Reasoning with inference-time compute

Sean Welleck
September 20, 2024

Carnegie Mellon University



AI reasoning

Figure 1: Solving olympiad problem

Figure 2: Writing code

Sequential tasks with an objective goal: many other applications!

1



AI reasoning

Figure 1: Solving olympiad problem

Figure 2: Writing code

Sequential tasks with an objective goal: many other applications!

1



AI (LLM) Reasoning | scaling

[2020-] Scaling pretraining: larger model, larger dataset

Figure 3: [Kaplan et al 2020]: test loss predictably improves with increased pretraining compute 2



AI (LLM) Reasoning | scaling

[2020-] Scaling pretraining: large model, large dataset

Figure 4: Llama 3.1 model size vs. MATH score 3



AI (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs

Figure 5: Scaling Instruction-Finetuned Language Models [Chung et al 2022]

4



AI (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs

Figure 7: MAmmoTH2: Scaling Instructions from the Web [Yue et al 2024]

4



AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 8: Generate extra “thought” tokens ([Wei et al 2022])

5



AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 9: Generate extra “thought” tokens ([Wei et al 2022]) 5



AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 10: Call generator multiple times (AlphaCode [Li et al 2022])

6



AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 11: Call generator multiple times (AlphaCode [Li et al 2022])

6



AI (LLM) Reasoning

[Now-] Inference-time scaling: increase compute at generation time

• Generate extra tokens (e.g., “thoughts”)
• Call generator multiple times
• ...

New scaling dimension requires new research

7



This talk

Reasoning with inference-time compute:

• Training models to “think”
• Leveraging strong evaluators
• Scaling inference compute

8



This talk

Reasoning with inference-time compute:

• Training models to “think”
• Leveraging strong evaluators
• Scaling inference compute

9



1. Training models to “think” | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck
https://arxiv.org/abs/2407.10040

10



1. Training models to “think” | Neural theorem proving

Neural theorem proving

• Math as checkable code
• Proof: sequence of (state, step)

11



1. Training models to “think” | Neural theorem proving

Rapid progress in methods based on language models:

Figure 12: miniF2F benchmark performance, 2022-2024

12



1. Training models to “think” | Neural theorem proving

Figure 13: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)

13



1. Training models to “think” | Neural theorem proving

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from theorems and proofs

• Generate proofs:

Figure 14: Best-first search

14



1. Training models to “think” | Neural theorem proving

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from theorems and proofs

• Generate proofs:

Figure 14: Best-first search

14



1. Training models to “think” | Lean-STaR

Can we train a model to “think” before each step of formal reasoning?

15



1. Training models to “think” | Lean-STaR

Why?

• Plan proof steps
• Diversify search space
• More tokens can give more computational capacity1

1E.g., Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective
Feng et al NeurIPS 2023 [1] 16



1. Training models to “think” | Lean-STaR

Lean-STaR (Self-taught reasoner2)

Learn to generate thoughts via reinforcement learning

1. Initialization
2. Reinforcement learning

2Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

17



1. Training models to “think” | Lean-STaR

1. Initialization

18



1. Training models to “think” | Lean-STaR

1. Initialization

18



1. Training models to “think” | Lean-STaR

2: Reinforcement learning

Need:

• Method to generate proofs
• Learning algorithm

19



1. Training models to “think” | Lean-STaR

2: Reinforcement learning

Need:

• Method to generate proofs
• Learning algorithm

19



1. Training models to “think” | Lean-STaR

Figure 15: Best-first search: difficult to score (thought, tactic) candidates

20



1. Training models to “think” | Lean-STaR

Figure 16: New sampling method

20



1. Training models to “think” | Lean-STaR

Algorithm: train on the successful proofs, and repeat:3

• Collect (state, thought, tactic) from successful proofs
• Train a new model p1θ(thought, tactic|state)
• Generate proofs
• ...

3I.e. Expert Iteration [Polu et al 2022 [2]], Rest-EM [Singh et al 2024 [3]]

21



1. Training models to “think” | Lean-STaR

• miniF2F [4]: competition problems (AMC, AIME, IMO)

22



1. Training models to “think” | Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

Pa
ss
ra
te

GPT-4
ReProver (retrieval-augmented)

COPRA (GPT-4 agent)
Lean-STaR 7B (start)

Lean-STaR 7B (+ thoughts)
Lean-STaR 7B (+ expert iteration)

Figure 17: MiniF2F test

23



1. Training models to “think” | Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

Pa
ss
ra
te

GPT-4
ReProver

COPRA (GPT-4 agent)
Lean-STaR 7B+ (start)

Lean-STaR 7B+ (+ thoughts)
Lean-STaR 7B+ (+ expert iteration)

Figure 18: MiniF2F test

24



1. Training models to “think” | Lean-STaR

Figure 19: Increasing the search budget is more effective with thoughts

25



1. Training models to “think” | Lean-STaR

Figure 20: Example generated thoughts and proof from Lean-STaR

26



1. Training models to “think” | Lean-STaR

Figure 21: Example generated thoughts and proof from Lean-STaR 27



1. Training models to “think” | Lean-STaR

Recap: Lean-STaR

• Learn to generate “thoughts” before each step
• Benefits from scaling up the inference budget

28



This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Scaling inference compute

29



2. Leveraging strong evaluators

Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision
Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, Chuang Gan
https://arxiv.org/abs/2403.09472

30



2. Leveraging strong evaluators

Formal theorem proving:

• Access to a perfect checker:

Lean(x, y) → {correct, incorrect}

More general tasks:

• Rely on humans:

Human(x, y) → {correct, incorrect}

Doesn’t scale to tasks that are too hard for humans

31



2. Leveraging strong evaluators

Formal theorem proving:

• Access to a perfect checker:

Lean(x, y) → {correct, incorrect}

More general tasks:

• Rely on humans:

Human(x, y) → {correct, incorrect}

Doesn’t scale to tasks that are too hard for humans

31



Easy-to-hard generalization

Key insight: a learned evaluator vϕ(x, y) → [0, 1] trained on easy problems may be
able to evaluate solutions to hard problems

32



Easy-to-hard generalization

Key insight: a learned evaluator vϕ(x, y) → [0, 1] trained on easy problems may be
able to evaluate solutions to hard problems

32



Easy-to-hard generalization

Key insight: a learned evaluator vϕ(x, y) → [0, 1] trained on easy problems may be
able to evaluate solutions to hard problems

32



Easy-to-hard generalization

Key insight: a learned evaluator vϕ(x, y) → [0, 1] trained on easy problems may be
able to evaluate solutions to hard problems

32



Easy-to-hard generalization

Key idea: we can use this “easy-to-hard evaluator” to score candidate generations

Need:

• Method for training the evaluator

• Inference strategy / “meta-generator”

33



Easy-to-hard generalization

Key idea: we can use this “easy-to-hard evaluator” to score candidate generations

Need:

• Method for training the evaluator

• Inference strategy / “meta-generator”

33



Easy-to-hard generalization

Experimental setting:

• Easy: level 1-3 problems from the MATH dataset
• Hard: level 4-5 problems from the MATH dataset

34



Easy-to-hard generalization

Evaluator: Outcome-process reward model (OPRM)4

OPRM: trained to predict both per-step and full solution correctness

4ORM: Training Verifiers to Solve Math Word Problems [Cobbe et al 2021].
PRM: Solving math word problems with process and outcome-based feedback [Uesato et al 2022]

35



Inference-time

Select a solution by weighted majority voting:5

• Generate many solutions (e.g. 1024)
• Score each solution using the evaluator gϕ(y)
• Group the solutions by answer, choose group with highest score

5Making Large Language Models Better Reasoners with Step-Aware Verifier [Li et al 2022]

36



Inference-time scaling on hard problems

Figure 22: Results on hard problems
37



Inference-time scaling on all problems

Figure 23: Results on all problems
38



Varying the size of the generator and evaluator

Ge
n 7
b +
RM
7b

Ge
n 3
4b
+ R
M
34b

Ge
n 3
4b
+ R
M
7b

Ge
n 7
b +
RM
34b

0

5

10

15

20

25

30

35

40
M
AT
H
Ac
cu
ra
cy
(%
)

Majority Voting
Best-of-N w/ RM
Weighted Voting

Figure 24: Comparison of Inference Methods with Different Model
Combinations

39



Using the evaluator for reinforcement learning

1. Generate solutions on easy and hard problems
2. Use easy-to-hard evaluator as a reward function

40



Using the evaluator for reinforcement learning

Outperforms finetuning on all problems:6

Models
20

30

40

50

M
AT
H
ac
cu
ra
cy

Finetune (easy x-y)
Finetune (all x-y)

RL (all x)

6Experiment setting: 7B model, RL with PPO
41



This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Easy-to-hard generalization

• Scaling inference compute

42



3. Scaling inference compute

An Empirical Analysis of Compute-Optimal Inference with LMs
Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang
https://arxiv.org/abs/2408.00724

43



3. Scaling inference compute

Figure 25: Increasing inference compute can improve performance

44



3. Scaling inference compute

Figure 26: Inference compute = f(model size, # tokens, inference strategy)

1. What is the best allocation of inference compute?

45



3. Scaling inference compute

Figure 26: Inference compute = f(model size, # tokens, inference strategy)

1. What is the best allocation of inference compute?
45



3. Scaling inference compute

For a compute budget C:

argminN,T,S s.t. cost(N,T,S)=Cerror(N, T, S)

N: number of model parameters

T: number of generated tokens

S: inference strategy

cost(N, T, S): in floating-point operations

46



3. Scaling inference compute

Figure 27: 1. Fix strategy, vary model size and number of tokens

47



3. Scaling inference compute

Figure 28: Smaller models often have better cost-performance tradeoffs.
Large model achieves best absolute performance.

47



3. Scaling inference compute

2. Vary strategy

• Best-of-N
• Weighted majority voting
• Monte-carlo tree search (MCTS)
• New: REBASE tree search

48



3. Scaling inference compute

Figure 29: REBASE tree search key idea

Expansion width(i) = round
(

Budgett
exp

(
R(nt,i)/β

)∑
j exp

(
R(nt,j)/β

))

49



3. Scaling inference compute

Figure 29: REBASE tree search key idea

Expansion width(i) = round
(

Budgett
exp

(
R(nt,i)/β

)∑
j exp

(
R(nt,j)/β

))
49



3. Scaling inference compute

Figure 30: REBASE is compute-optimal 50



3. Scaling inference compute

1. What is the best allocation of inference compute?
2. What if we had infinite inference compute?

51



3. Scaling inference compute

Theorem:

lim
N→∞

accuracy(N,D1:M, pθ, v)︸ ︷︷ ︸
accuracy of weighted majority voting

=
1
M

M∑
i=1

I

y∗i = argmax
y

∑
z
v(x, z, y)pθ(y, z|x)︸ ︷︷ ︸

Sum over all solution paths z


Notation:

• (x, z, y): (input, solution, answer)

• D1:M = {(xi, y∗i )}
M
i=1

Intuitively, majority voting will eventually “saturate”

• (so majority voting is not all you need)

52



3. Scaling inference compute

Theorem:

lim
N→∞

accuracy(N,D1:M, pθ, v)︸ ︷︷ ︸
accuracy of weighted majority voting

=
1
M

M∑
i=1

I

y∗i = argmax
y

∑
z
v(x, z, y)pθ(y, z|x)︸ ︷︷ ︸

Sum over all solution paths z


Notation:

• (x, z, y): (input, solution, answer)

• D1:M = {(xi, y∗i )}
M
i=1

Intuitively, majority voting will eventually “saturate”

• (so majority voting is not all you need)

52



This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Easy-to-hard generalization

• Scaling inference compute
• Compute-optimal inference

53



Thank you!

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck, 2024.

Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision.

Zhiqing Sun∗, Longhui Yu∗, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, Chuang Gan, 2024.

An Empirical Analysis of Compute-Optimal Inference with LMs.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang, 2024.

54



Thank you!

Also check out our survey paper (and upcoming NeurIPS 2024 tutorial) on
inference-time algorithms!

From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models.
Sean Welleck, Amanda Bertsch∗, Matt Finlayson∗, Hailey Schoelkopf∗,
Alex Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui, 2024.

Sean Welleck
Learning, Language, and Logic (L3) Lab

55

https://cmu-l3.github.io/


References i

G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang.
Towards revealing the mystery behind chain of thought: A
theoretical perspective.
In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and
I. Sutskever.
Formal mathematics statement curriculum learning.
In The Eleventh International Conference on Learning
Representations, 2023.

56



References ii

A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J.
Liu, J. Harrison, J. Lee, K. Xu, A. Parisi, A. Kumar, A. Alemi,
A. Rizkowsky, A. Nova, B. Adlam, B. Bohnet, G. Elsayed, H. Sedghi,
I. Mordatch, I. Simpson, I. Gur, J. Snoek, J. Pennington, J. Hron,
K. Kenealy, K. Swersky, K. Mahajan, L. Culp, L. Xiao, M. L. Bileschi,
N. Constant, R. Novak, R. Liu, T. Warkentin, Y. Qian, Y. Bansal,
E. Dyer, B. Neyshabur, J. Sohl-Dickstein, and N. Fiedel.
Beyond human data: Scaling self-training for problem-solving
with language models, 2024.
K. Zheng, J. M. Han, and S. Polu.
minif2f: a cross-system benchmark for formal olympiad-level
mathematics.
In International Conference on Learning Representations, 2022.

57


