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AI reasoning

Figure 1: Solving olympiad problem

Figure 2: Writing code

Sequential tasks with an objective goal: many other applications!
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AI (LLM) Reasoning | scaling

[2020-] Scaling pretraining: larger model, larger dataset

Figure 3: [Kaplan et al 2020]: test loss predictably improves with increased pretraining compute 2



AI (LLM) Reasoning | scaling

[2020-] Scaling pretraining: large model, large dataset

Figure 4: Llama 3.1 model size vs. MATH score 3



AI (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs

Figure 5: Scaling Instruction-Finetuned Language Models [Chung et al 2022]
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AI (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs

Figure 7: MAmmoTH2: Scaling Instructions from the Web [Yue et al 2024]
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AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 8: Generate extra “thought” tokens ([Wei et al 2022])
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[Now∗] Inference-time scaling: increase compute at generation time

Figure 9: Generate extra “thought” tokens ([Wei et al 2022]) 5



AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 10: Call generator multiple times (AlphaCode [Li et al 2022])
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AI (LLM) Reasoning

[Now∗] Inference-time scaling: increase compute at generation time

Figure 11: Call generator multiple times (AlphaCode [Li et al 2022])
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AI (LLM) Reasoning

[Now-] Inference-time scaling: increase compute at generation time

• Generate extra tokens (e.g., “thoughts”)
• Call generator multiple times
• ...

New scaling dimension requires new research
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This talk

Reasoning with inference-time compute:

• Training models to “think”
• Leveraging strong evaluators
• Scaling inference compute
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1. Training models to “think” | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck
https://arxiv.org/abs/2407.10040
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1. Training models to “think” | Neural theorem proving

Neural theorem proving

• Math as checkable code
• Proof: sequence of (state, step)
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1. Training models to “think” | Neural theorem proving

Rapid progress in methods based on language models:

Figure 12: miniF2F benchmark performance, 2022-2024
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1. Training models to “think” | Neural theorem proving

Figure 13: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)
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1. Training models to “think” | Neural theorem proving

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from theorems and proofs

• Generate proofs:

Figure 14: Best-first search
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1. Training models to “think” | Lean-STaR

Can we train a model to “think” before each step of formal reasoning?
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1. Training models to “think” | Lean-STaR

Why?

• Plan proof steps
• Diversify search space
• More tokens can give more computational capacity1

1E.g., Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective
Feng et al NeurIPS 2023 [1] 16



1. Training models to “think” | Lean-STaR

Lean-STaR (Self-taught reasoner2)

Learn to generate thoughts via reinforcement learning

1. Initialization
2. Reinforcement learning

2Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022
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1. Initialization
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1. Initialization
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1. Training models to “think” | Lean-STaR

2: Reinforcement learning

Need:

• Method to generate proofs
• Learning algorithm
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1. Training models to “think” | Lean-STaR

Figure 15: Best-first search: difficult to score (thought, tactic) candidates
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1. Training models to “think” | Lean-STaR

Figure 16: New sampling method
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1. Training models to “think” | Lean-STaR

Algorithm: train on the successful proofs, and repeat:3

• Collect (state, thought, tactic) from successful proofs
• Train a new model p1θ(thought, tactic|state)
• Generate proofs
• ...

3I.e. Expert Iteration [Polu et al 2022 [2]], Rest-EM [Singh et al 2024 [3]]
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1. Training models to “think” | Lean-STaR

• miniF2F [4]: competition problems (AMC, AIME, IMO)
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1. Training models to “think” | Lean-STaR

miniF2F test
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Figure 17: MiniF2F test

23



1. Training models to “think” | Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

Pa
ss
ra
te

GPT-4
ReProver

COPRA (GPT-4 agent)
Lean-STaR 7B+ (start)

Lean-STaR 7B+ (+ thoughts)
Lean-STaR 7B+ (+ expert iteration)

Figure 18: MiniF2F test

24



1. Training models to “think” | Lean-STaR

Figure 19: Increasing the search budget is more effective with thoughts
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1. Training models to “think” | Lean-STaR

Figure 20: Example generated thoughts and proof from Lean-STaR
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1. Training models to “think” | Lean-STaR

Figure 21: Example generated thoughts and proof from Lean-STaR 27



1. Training models to “think” | Lean-STaR

Recap: Lean-STaR

• Learn to generate “thoughts” before each step
• Benefits from scaling up the inference budget
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This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Scaling inference compute
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2. Leveraging strong evaluators

Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision
Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, Chuang Gan
https://arxiv.org/abs/2403.09472
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2. Leveraging strong evaluators

Formal theorem proving:

• Access to a perfect checker:

Lean(x, y) → {correct, incorrect}

More general tasks:

• Rely on humans:

Human(x, y) → {correct, incorrect}

Doesn’t scale to tasks that are too hard for humans
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Easy-to-hard generalization

Key insight: a learned evaluator vϕ(x, y) → [0, 1] trained on easy problems may be
able to evaluate solutions to hard problems
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Easy-to-hard generalization

Key idea: we can use this “easy-to-hard evaluator” to score candidate generations

Need:

• Method for training the evaluator

• Inference strategy / “meta-generator”
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Easy-to-hard generalization

Experimental setting:

• Easy: level 1-3 problems from the MATH dataset
• Hard: level 4-5 problems from the MATH dataset
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Easy-to-hard generalization

Evaluator: Outcome-process reward model (OPRM)4

OPRM: trained to predict both per-step and full solution correctness

4ORM: Training Verifiers to Solve Math Word Problems [Cobbe et al 2021].
PRM: Solving math word problems with process and outcome-based feedback [Uesato et al 2022]
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Inference-time

Select a solution by weighted majority voting:5

• Generate many solutions (e.g. 1024)
• Score each solution using the evaluator gϕ(y)
• Group the solutions by answer, choose group with highest score

5Making Large Language Models Better Reasoners with Step-Aware Verifier [Li et al 2022]
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Inference-time scaling on hard problems

Figure 22: Results on hard problems
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Inference-time scaling on all problems

Figure 23: Results on all problems
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Varying the size of the generator and evaluator
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Figure 24: Comparison of Inference Methods with Different Model
Combinations
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Using the evaluator for reinforcement learning

1. Generate solutions on easy and hard problems
2. Use easy-to-hard evaluator as a reward function
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Using the evaluator for reinforcement learning

Outperforms finetuning on all problems:6
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6Experiment setting: 7B model, RL with PPO
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This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Easy-to-hard generalization

• Scaling inference compute
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3. Scaling inference compute

An Empirical Analysis of Compute-Optimal Inference with LMs
Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang
https://arxiv.org/abs/2408.00724
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3. Scaling inference compute

Figure 25: Increasing inference compute can improve performance
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3. Scaling inference compute

Figure 26: Inference compute = f(model size, # tokens, inference strategy)

1. What is the best allocation of inference compute?
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Figure 26: Inference compute = f(model size, # tokens, inference strategy)

1. What is the best allocation of inference compute?
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3. Scaling inference compute

For a compute budget C:

argminN,T,S s.t. cost(N,T,S)=Cerror(N, T, S)

N: number of model parameters

T: number of generated tokens

S: inference strategy

cost(N, T, S): in floating-point operations
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3. Scaling inference compute

Figure 27: 1. Fix strategy, vary model size and number of tokens
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3. Scaling inference compute

Figure 28: Smaller models often have better cost-performance tradeoffs.
Large model achieves best absolute performance.
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3. Scaling inference compute

2. Vary strategy

• Best-of-N
• Weighted majority voting
• Monte-carlo tree search (MCTS)
• New: REBASE tree search
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3. Scaling inference compute

Figure 29: REBASE tree search key idea

Expansion width(i) = round
(
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)∑
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3. Scaling inference compute

Figure 29: REBASE tree search key idea
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3. Scaling inference compute

Figure 30: REBASE is compute-optimal 50



3. Scaling inference compute

1. What is the best allocation of inference compute?
2. What if we had infinite inference compute?
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3. Scaling inference compute

Theorem:

lim
N→∞

accuracy(N,D1:M, pθ, v)︸ ︷︷ ︸
accuracy of weighted majority voting

=
1
M

M∑
i=1

I

y∗i = argmax
y

∑
z
v(x, z, y)pθ(y, z|x)︸ ︷︷ ︸

Sum over all solution paths z


Notation:

• (x, z, y): (input, solution, answer)

• D1:M = {(xi, y∗i )}
M
i=1

Intuitively, majority voting will eventually “saturate”

• (so majority voting is not all you need)
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This talk

Reasoning with inference-time compute:

• Training models to “think”
• Lean-STaR

• Leveraging strong evaluators
• Easy-to-hard generalization

• Scaling inference compute
• Compute-optimal inference
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Thank you!

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck, 2024.

Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision.

Zhiqing Sun∗, Longhui Yu∗, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, Chuang Gan, 2024.

An Empirical Analysis of Compute-Optimal Inference with LMs.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang, 2024.
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Thank you!

Also check out our survey paper (and upcoming NeurIPS 2024 tutorial) on
inference-time algorithms!

From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models.
Sean Welleck, Amanda Bertsch∗, Matt Finlayson∗, Hailey Schoelkopf∗,
Alex Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui, 2024.

Sean Welleck
Learning, Language, and Logic (L3) Lab
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https://cmu-l3.github.io/
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