Reasoning with inference-time compute

Sean Welleck
September 20, 2024

Carnegie Mellon University



Al reasoning

Al achieves silver-medal standard solving
International Mathematical Olympiad
problems

Figure 1: Solving olympiad problem

Figure 2: Writing code



Al reasoning

Al achieves silver-medal standard solving
International Mathematical Olympiad
problems

Figure 1: Solving olympiad problem

Figure 2: Writing code

Sequential tasks with an objective goal: many other applications!



Al (LLM) Reasoning | scaling

[2020-] Scaling pretraining: larger model, larger dataset

w 5
3
34
=
3
F 3
L = (Conf2.3 1090050
2 ) \ T T
1= 1077 107 107° 107!  10'

Compute

Figu re 3: [Kaplan et al 2020]: test loss predictably improves with increased pretraining compute D)



Al (LLM) Reasoning | scaling

[2020-] Scaling pretraining: large model, large dataset

MATH Performance for Llama 3.1 Pretrained Models
o Source: table 12 of https://arxiv.org/pdf/2407.21783v2

MATH Performance

10! 102
Model Size (Billion Parameters)

Figure 4: Llama 31 model size vs. MATH score



Al (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs

Instruction finetuning

Please answer the following question.
Whatis the boiling point of Nitrogen?

Chain-of-thought finetuning

A Ty [l The cafeteria had 23 apples
e . originally. They used 20 to
The cafeteria had 23 apples. If they make lunch. So they had 23 -
used 20 for lunch and bought 6 more,

\ 20 = 3. They bought 6 more
how many apples do they have? Language apples, so they have 3 + 6 =9.
model

Inference: generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Figure 5: Scaling Instruction-Finetuned Language Models [Chung et al 2022]



Al (LLM) Reasoning | scaling

[2022-] Scaling fine-tuning: fine-tune on diverse (input, output) pairs
MATH

w
o

N
()]

Accuracy (%)

N
o

2M 4M 6M 8M 10M

# of Instructions

Figure 7: MAmmoTH?2: Scaling Instructions from the Web [Yue et al 2024]



Al (LLM) Reasoning

[Now*] Inference-time scaling: increase compute at generation time

input -> answer input ->[thought|, answer

Model Output
A: The answer is 27. x ]

Figure 8: Generate extra “thought” tokens ([Wei et al 2022])

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. ¢/




Al (LLM) Reasoning

[Now*] Inference-time scaling: increase compute at generation time

—e— Standard prompting
—6&— Chain-of-thought prompting
- Prior supervised best

LaMDA

1

04 8 137 04 7 175 8 62 540

Model scale (# parameters in billions)

PaLM

N s D
o o O

GSM8K
solve rate (%)

[e=}

Figure 9: Generate extra “thought” tokens ([Wei et al 2022])



Al (LLM) Reasoning

[Now*] Inference-time scaling: increase compute at generation time

GitHub CodeContests | Codeforces Large set Selected
! small set

of potential
@ Problems ' Problems solutions of candidates
e 55 —@— D

____________________________________
Filtering
& clustering
rrrrrrrrrrrr ARNING ----}--------
Pre-training —> Fine-tuning -—> La;agmepff:gle g ecute

Overview of AlphaCode.

Figure 10: Call generator multiple times (AlphaCode [Li et al 2022])



Al (LLM) Reasoning

[Now*] Inference-time scaling: increase compute at generation time

—— 300M
~— 1B
041 — 3B
— 9B
— 41B

0.1

0.
q 0 10* 102 103 104 10° 109
Sample budget

(b) Unlimited attempts per problem

Figure 11: Call generator multiple times (AlphaCode [Li et al 2022])



Al (LLM) Reasoning

[Now-] Inference-time scaling: increase compute at generation time

- Generate extra tokens (e.g,, “thoughts”)
- Call generator multiple times

New scaling dimension requires new research



Reasoning with inference-time compute:

- Training models to “think”
- Leveraging strong evaluators

- Scaling inference compute



Reasoning with inference-time compute:

- Training models to “think”
- Leveraging strong evaluators

- Scaling inference compute



1. Training models to “think” | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiging Sun, Yiming Yang, Sean Welleck

https://arxiv.org/abs/240710040



1. Training models to “think” | Neural theorem proving

Neural theorem proving

[ Theorem ]

Proof State

a : Type u_1
rst: Seta
recs-sct-arct

\——
—
Next step

)

("tactic")

- Math as checkable code
- Proof: sequence of (state, step)

1



1. Training models to “think” | Neural theorem proving

Rapid progress in methods based on language models:

70
52.5
35

17.5

Jiang 2022 Wu2022  Jiangetal 2023  Zhao 2023 Lin 2024 Wu 2024 Xin 2024

Figure 12: miniF2F benchmark performance, 2022-2024



1. Training models to “think” | Neural theorem proving

theorem imo_ 1960_p2 (x : R) (hp : 0 < 1 + 2 * x) (hy : (1 - Real.sqrt (1 + 2 %

x)) T 2#0)
(hy : 4*x "2/ (1 -Real.sqrt (1 +2 *x)) ~2<2*x+9) :-(1/2)
<X AXx<45/ 8 :=by

norm_num at hg h; hp

have h3 : 0 < 1 + 2 * x := by linarith

have hy : 0 < 1 + Real.sgrt (1 + 2 * x) := by
nlinarith [Real.sqrt_nonneg (1 + 2 * x)]

have hs : 4 * x ~ 2/ (1 - Real.sqrt (1 + 2 * x)) = 2< 2% x + 9 := by
linarith

have hs : 1 - Real.sqrt (1 + 2 * x) # 0 := by
intro h
apply hy
nlinarith

have h; : 4 * x ~ 2/ (1 - Real.sqrt (1 + 2 * x)) =~ 2 = (1 + Real.sqrt (1 +
2 *xx)) ~ 2 :=by
field_simp [hel
nlinarith [sq_sqrt (show O < 1 + 2 * x by linarith)]

rw [h;] at hs

constructor <;> nlinarith [sq_sqrt (show O < 1 + 2 * x by linarith)]

Figure 13: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)



1. Training models to “think” | Neural theorem proving

Language model-based proving:

- Train a model py(y|x) on a dataset D = {(x,y)}, e.g,
- x: proof state
- y: next tactic (next “step”)
- D: extracted from theorems and proofs

14



1. Training models to “think” | Neural theorem proving

Language model-based proving:

- Train a model py(y|x) on a dataset D = {(x,y)}, e.g,
- x: proof state
- y: next tactic (next “step”)
- D: extracted from theorems and proofs

- Generate proofs:

(-0.109) apply Nat.le_add_right

type-checked candidates: 1:::::::::::(—0.173) exact Nat.le_add_right _ _
(-0.066) rintro rfl
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Figure 14: Best-first search

e

>

14



1. Training models to “think” | Lean-STaR

Input - Lean State

i State
b : N

Input - Lean State

i State
b : N

Nat.lcm 120 b

Nat.gcd 120 b
2u8
Nat.lcm 120

b=
Nat.ged 120 b = 8
= 2u8

Output - Natural Language Thought

## Reasoning

To determine the specific value of ‘b’ from the given hypotheses about its greatest common

[divisor (GCD) and least common multiple (LCM) with '120°, we need to relate the given GCD to the

LcH, recognizing the fundamental theorem of greatest common divisors which relates LCH to GCD in

la specific way. This will enable us to establish an equation involving ‘b, facilitating the
identification of 'b' through algebraic manipulation

Output - Lean Tactic

4 Next tactic:

have h

= Nat.ged_mul_Lem 120 b

Output - Lean Tactic

i

B
= Nat.ged_mul_lem 120 b

Can we train a model to “think” before each step of formal reasoning?




1. Training models to “think”

Input - Lean State

i State
b : N

Input - Lean State

ho : Nat.lem 120 b = 3720
h. : Nat.ged 120 b =
b = 2u8

8

Output - Natural Language Thought

## Reasoning
To determine the specific value of ‘b’ from the given hypotheses about its greatest common
[divisor (GCD) and least common multiple (LCM) with '120°, we need to relate the given GCD to the
LcM, recognizing the fundamental theorem of greatest common divisors which relates LCM to GCD in
la specific way. This will enable us to establish an equation involving ‘b, facilitating the

identification of ‘b’ through algebraic manipulation.

v

Output - Lean Tactic
et Next tactic:
have h := Nat.gcd_mul_lem 126 b

Output - Lean Tactic

### Next tactic:
have h := Nat.gcd_mul_Lem 120 b

Why?

- Plan proof steps
- Diversify search space
- More tokens can give more computational capacity’

1E.g., Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective
Feng et al NeurlPS 2023 [1]

16



1. Training models to “think” | Lean-STaR

Lean-STaR (Self-taught reasoner?)

Learn to generate thoughts via reinforcement learning

1. Initialization

2. Reinforcement learning

%Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022



1. Training models to “think” | Lean-STaR

1. Initialization

Annotate thoughts "retrospeetively"

Formal | —> —»
proofs



1. Training models to “think” | Lean-STaR

1. Initialization

Train initial model on

(state, tl«ougl«t) -> step example_s

[S‘tnteJ( thought ] Lstep
[Sta\te)( tl«ougl«t ) ( ste_P J ) T\’am>

(state | thought ] step )




1. Training models to “think” | Lean-STaR

2: Reinforcement learning

Kp[ thought ][ step ][ thought l step]
,—>[ thought | step | thought J step ] - _> -
\‘Wougl«t n step tkougl\q step]

Reinforcement
Learning

19



1. Training models to “think” | Lean-STaR

2: Reinforcement learning

Kp[ thought ][ step ][ thought l step]
,—>[ thought | step | thought J step ] - _> -
\‘Wougl«t n step tkougl\q step]

Reinforcement
Learning

Need:

- Method to generate proofs
- Learning algorithm

19



1. Training models to “think” | Lean-STaR

(-0.109) apply Nat.le_add_right &
&

type-checked candidates: /(—0.173) exact Nat.le_add_right _ _ @
(-0.066) rintro rfl o
(-0.307) rintro (rfl, rfl)
(-0.035) intro h
(-0.230) rintro (d, rfl)

Figure 15: Best-first search: difficult to score (thought, tactic) candidates

20



1. Training models to “think” | Lean-STaR

State 0
(Root)

legal legal Iegal \Hega\

State 1 state2 (1892l | State 3 State 0
legal legal Iej/al Ie al
State 4 States |

T

Figure 16: New sampling method

20



1. Training models to “think” | Lean-STaR

Algorithm: train on the successful proofs, and repeat:?

- Collect (state, thought, tactic) from successful proofs
- Train a new model pj(thought, tactic|state)

- Generate proofs

3l.e. Expert Iteration [Polu et al 2022 [2]], Rest-EM [Singh et al 2024 [3]]

21



1. Training models to “think” | Lean

- miniF2F [4]: competition problems (AMC, AIME, IMO)

Problem 1959 IMO Problems/Problem 1

. 2In+4 .
Prove that the fraction Tt 3|s irreducible for every natural number n.
7

train [ mathiip (] ¥ I
test y eorem imo_1959_p1
(n : N)

(he : @ < n) :
Nat.gcd (21%n + 4) (14%n + 3) = 1 :=

22



1. Training models to “think” | Lean-STaR

Pass rate

miniF2F test

0o GPT-4

00 ReProver (retrieval-augmented)
Oo COPRA (GPT-4 agent)

In Lean-STaR 7B (start)

IR Lean-STaRr 7B (+ thoughts)
B0 Lean-sTar 78 (+ expert iteration)

Figure 17: MiniF2F test

23



1. Training models to “think” | Lean-STaR

Pass rate

miniF2F test

0o GPT-4

0o ReProver

lo COPRA (GPT-4 agent)
In Lean-STaR 7B+ (start)

I lean-sTar78B+ (+ thoughts)
D@ Lean-star 7B+ (+ expert iteration)

Figure 18: MiniF2F test

24




1. Training models to “think” | Lean-

Performance Comparison

35

30

25

Percentage (%)

20

—e— SFT-Direct (Search)
~e— SFT-Direct (Sampling)
—e— Lean-STAR (Sampling)

15

32 64
Search budget

Figure 19: Increasing the search budget is more effective with thoughts

25



1. Training models to “think” | Lean-

theorem amc12a_2002_p6 (n : N) (hp : 0 < n)
:3dm,m>nAJp, m*xp <m+p:=
use n + 1, by linarith only [ho] -- Reasoning: To demonstrate the ezistence of
such an ‘m’ and "p° that satisfy the given inequalities, we leverage the
property of natural numbers that ensures an increase in 'n’ from “0° leads to
the possibility of finding such "m™ and “p°. This approach is supported by the
fundamental property of natural numbers and their arithmetic operations,
suggesting that for a given "n° greater than "0, there ezists a successor "m’
and a number “p° that satisfy the conditions outlined.
exact {0, by simp ) -- Reasoning: To demonstrate that there ezists an \(n \in N
\) such that \((n + 1) ¥ p \legn + 1 + p\) holds for some \(p \in N\), we
recognize that setting \(p = 0\) satisfies the inequality by the properties of
zero in arithmetic. This is because \(n + 1 > 0\) by assumption, ensuring the
left-hand side is non-negative and the right-hand side simplifies to \(n +
1\), making the inequality trivially true.

Figure 20: Example generated thoughts and proof from Lean-STaR

26



1. Training models to “think” | Lean-STaR

theoren aine 1983.p2 (x p 1 R) (£ : R 5> R) (o : 0<pAP<18) (m :p<xAx
<15

By tn e g e e 10 e 199

Cases® I ¥ith by by - Reasoning: Given a function |(11) defined over the real
numbers, where 1(7(2)\) equals the sun of the absolute values of the

and at \(151)

can establish a lower bound

\(151)

. abs_of_nonneg (sub_nonnes

Reasoning: e abjective s to show hat |(1(2)\) s at least 15 ;N \

within the bounds |(p |le = \le 151), where |(pl) 43 positive b
The provided sapression for |(1(e)\) suggerts using propertics of absotute

\(f(2)\). By applying

: 5
i md Lhc Junction “f°. Since the

e
congr 1 -- Reasoning: To establish the inequality

181 - 3 e recognise that the Left-hand vide of y involves a
miz of additions and subtra 1 nunbers a congruence
transfornation that simplifie. ons invetving absoiute values, ve ain to
align both sides of the inequality in a form that directly reflects

properties of real nunbers nder these, operations

simp only [abs_of. r ) o . it
T o pessoning’ The obgestiva e B0 prove.om meuiiity. savoiving sbesiets

vslues and subiractions that aligna the gtven condisions end constratate

Simplificat e propertics of abeolute values and the provided bounds
can directly Lead to the Heired concausion by copressing the spsotute vatues
in terns of their underlying ecpressions and applying th

straints
sinp [abs_of pos, *] -- Reasoning: To prove the given inequality involving
g algedraic p

hpotheses will directiy Lead us to the desired inequality by recogniing the
algebraic manipulation and application of the known bounds »

well as the non-negativity of

rv (abs_of_nonpos] -~ Reasoning 3 hat 15 < 15
0z - p - 15] - p* under the given constraints on 'p’ and 'z'. Given 'p < 15

1

itive, This

propertics, demonstrating the inequality's validity under the given conditions

Figure 21: Example generated thoughts and proof from Lean-STaR 2



1. Training models to “think” | Lean-STaR

Recap: Lean-STaR

- Learn to generate “thoughts” before each step
- Benefits from scaling up the inference budget

28



Reasoning with inference-time compute:

- Training models to “think”
- Lean-STaR
- Leveraging strong evaluators

- Scaling inference compute

29



2. Leveraging strong evaluators

Easy-to-Hard Generalization:

Scalable Alignment Beyond Human Supervision
Zhiging Sun, Longhui Yu, Yikang Shen, Weiyang Liu,

Yiming Yang, Sean Welleck, Chuang Gan
https://arxiv.org/abs/2403.09472

30



2. Leveraging strong evaluators

Formal theorem proving:

- Access to a perfect checker:

Lean(x,y) — {correct, incorrect }

31



2. Leveraging strong evaluators

Formal theorem proving:

- Access to a perfect checker:

Lean(x,y) — {correct, incorrect }

More general tasks:

- Rely on humans:

Human(x, y) — {correct, incorrect }

31



Easy-to-hard generalization

Our Analogy on
Easy-to-Hard Generalization

1+1=2 3x3=?

Of 41 YO

=8

humans reliably supervise strong models
on easy tasks and evaluate them on hard tasks

32



Easy-to-hard generalization

32



Easy-to-hard generalization

32



Easy-to-hard generalization

Key insight: a learned evaluator vy (x,y) — [0,1] trained on easy problems may be

able to evaluate solutions to hard problems
32



Easy-to-hard generalization

r_.( output candidate
Choies > - > [titer] -+
\ output candidate

Inference strategy / "Meta-generator”

Key idea: we can use this “easy-to-hard evaluator” to score candidate generations

33



Easy-to-hard generalization

r_.( output candidate
(ot ) — > [titer] -+
\ output candidate

Inference strategy / "Meta-generator”

Key idea: we can use this “easy-to-hard evaluator” to score candidate generations

Need:

- Method for training the evaluator

- Inference strategy / “meta-generator”

33



Easy-to-hard generalization

Experimental setting:

- Easy: level 1-3 problems from the MATH dataset
- Hard: level 4-5 problems from the MATH dataset

34



Easy-to-hard generalization

Evaluator: Outcome-process reward model (OPRM)*

Outcome reward

[ prob[em I solution ]—’ (";;;;l) —> f *

[ Process reward

problem I step 1 Istep 21 step 3] -> model >ty

(PRM)

OPRM: trained to predict both per-step and full solution correctness

“ORM: Training Verifiers to Solve Math Word Problems [Cobbe et al 2021].
PRM: Solving math word problems with process and outcome-based feedback [Uesato et al 2022]

35



Inference-time

Select a solution by weighted majority voting:

- Generate many solutions (e.g. 1024)
- Score each solution using the evaluator g4(y)
- Group the solutions by answer, choose group with highest score

>Making Large Language Models Better Reasoners with Step-Aware Verifier [Li et al 2022]

36



Inference-time scaling on hard problems

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

35 32,58

—— Majority Voting
Q| g —— Weighted Voting w/ RM
—— Best-of-N w/ RM

3 1 2 4 8 16 32 64 1282565121024
N = number of solutions per problem

Figure 22: Results on hard problems
37



Inference-time scaling on all problems

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

55

—— Majority Voting
—— Weighted Voting w/ RM
—— Best-of-N w/ RM

1 2 4 8 16 32 64 1282565121024
N = number of solutions per problem

Figure 23: Results on all problems

38



Varying the size of the generator and evaluator

40 — ,
0o Majority Voting

35 1|00 Best-of-N w/ RM

30 — | |00 weighted Voting

51— —=

MATH Accuracy (%)
N
(@)
|\
I
|

15

10
5

I I I I

A° W AY W

N > N &
o R o R
(Z,Q/\ f,)\;sg (\’b\x A
© 2 &2 “



Using the evaluator for reinforcement learning

f_’ output candidate output candidate
(e ) s ), (27 _,
\\. output candidate ( output candidate )

Reinforcement
Learning

1. Generate solutions on easy and hard problems
2. Use easy-to-hard evaluator as a reward function

40



Using the evaluator for reinforcement learning

Outperforms finetuning on all problems:®

50 ;
DB Finetune (easy x-y)
08 Finetune (all x-y)
g ol Ll RL (all x)
>
(@)
(&)
[go]
T
2 30 )
=
20 ‘

Models
SExperiment setting: 7B model, RL with PPO

41



Reasoning with inference-time compute:

- Training models to “think”
- Lean-STaR

- Leveraging strong evaluators
- Easy-to-hard generalization

- Scaling inference compute

42



3. Scaling inference compute

An Empirical Analysis of Compute-Optimal Inference with LMs
Yangzhen Wu, Zhiging Sun, Shanda Li, Sean Welleck, Yiming Yang

https://arxiv.org/abs/2408.00724

43



3. Scaling inference compute

55
50 o
45/
40/
35
30
251 g
20

46.67  46.53

46.53

Performance

—— Majority Voting
—— Weighted Voting w/ RM
—— Best-of-N w/ RM

1 2 4 8 16 32 64 1282565121024
Inference compute

—

Figure 25: Increasing inference compute can improve performance

I



3. Scaling inference compute

Strategy
1 ( "w«e‘ba-ge_ne_ra‘tor")

'

Inference
COMPUte

Model size # tokens

N\

Figure 26: Inference compute = f(model size, # tokens, inference strategy)

45



3. Scaling inference compute

Strategy
1 ( "w«e‘ba-ge_ne_ra‘tor")

'

Inference
COMPUte

Model size # tokens

N\

Figure 26: Inference compute = f(model size, # tokens, inference strategy)

1. What is the best allocation of inference compute?
45



3. Scaling inference compute

For a compute budget C:
argminy rs st cost(n,7,5)=cerror(N, T, S)

N: number of model parameters
T: number of generated tokens
S: inference strategy

cost(N,T,S): in floating-point operations

46



3. Scaling inference compute

Fix strategy S

.

Error N2

N3
N4

— >
Compute l:uolget

Figure 27: 1. Fix strategy, vary model size and number of tokens
47



3. Scaling inference compute

Inference scaling (Weighted Majority)

& 701 —— 410M

S 60 1.4B

(V)]

O 50 —— 2.8B

c N —— 6.9B

S a0, ;

° 40 —— 12B

o

5 30

b

0

Poof oo
2 8 32 128 512 2048

Inference FLOPs per question (x10%%)

Figure 28: Smaller models often have better cost-performance tradeoffs.
Large model achieves best absolute performance.

47



3. Scaling inference compute

2. Vary strategy
- Best-of-N
- Weighted majority voting
- Monte-carlo tree search (MCTS)
- New: REBASE tree search

48



3. Scaling inference compute

Reward model
sScores
expansion width: 4
step t O 1

expansmn width: 0

expansion width: 1

Figure 29: REBASE tree search key idea

49



3. Scaling inference compute

Reward model
sScores
expansion width: 4
step t O 1

expansmn width: 0

expansion width: 1

Figure 29: REBASE tree search key idea

Expansion width(/) = round <Budgett Zexep (R((,:(tr;)/)ﬁ/)ﬂ) >
j &P MMt

49



3. Scaling inference compute

75+ —e— Sampling (7B)
T Sampling (34B)
E 70 MCTS (7B)
= MCTS (34B)
- 657 —o— REBASE (7B)
S —— REBASE (34B)
| -
e 60'
| -
o
+— 551
wn
ki)

501

4 16 64 256 1024

Inference FLOPs per question (x10'?)

Figure 30: REBASE is compute-optimal 50



3. Scaling inference compute

1. What is the best allocation of inference compute?

2. What if we had infinite inference compute?

51



3. Scaling in

Theorem:

M

;

accuracy(N, Dru, Po,V) = 7 Iy =arg max > v(x,2,y)po (Y- 2IX)
z

i=1

lim
N—oo

accuracy of weighted majority voting

Sum over all solution paths z

Notation:

- (x,2,y): (input, solution, answer)

* Dim = {(ley/*)}:w:‘\

52



3. Scaling inference compute

Theorem:

M

;

accuracy(N, Dy, Pg,V) = m S Iy =arg max > v(x,2,y)po (Y- 2IX)
Ve

i=1

lim
N—oo

accuracy of weighted majority voting
Sum over all solution paths z

Notation:

- (x,2,y): (input, solution, answer)

* Dim = {(ley/*)}:w:‘\

* (so majority voting is not all you need)

52



Reasoning with inference-time compute:

- Training models to “think”
- Lean-STaR
- Leveraging strong evaluators
- Easy-to-hard generalization
- Scaling inference compute
- Compute-optimal inference

53



Thank you!

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiging Sun, Yiming Yang, Sean Welleck, 2024.

Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision.
Zhiging Sun*, Longhui Yu*, Yikang Shen, Weiyang Liu,
Yiming Yang, Sean Welleck, Chuang Gan, 2024.

An Empirical Analysis of Compute-Optimal Inference with LMs.

Yangzhen Wu, Zhiging Sun, Shanda Li, Sean Welleck, Yiming Yang, 2024.

54



Thank you!

Also check out our survey paper (and upcoming NeurlPS 2024 tutorial) on
inference-time algorithms!

From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models.
Sean Welleck, Amanda Bertsch*, Matt Finlayson*, Hailey Schoelkopf*,

Alex Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui, 2024.

Sean Welleck
Learning, Language, and Logic (L3) Lab

55


https://cmu-l3.github.io/

References i

[@ G.Feng, B.Zhang, Y. Gu, H. Ye, D. He, and L. Wang.
Towards revealing the mystery behind chain of thought: A
theoretical perspective.
In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[@ S.Polu, ). M. Han, K. Zheng, M. Baksys, I. Babuschkin, and
. Sutskever.
Formal mathematics statement curriculum learning.
In The Eleventh International Conference on Learning
Representations, 2023.

56



References ii

& A Singh, ). D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J.
Liu, J. Harrison, ). Lee, K. Xu, A. Parisi, A. Kumar, A. Alemi,
A. Rizkowsky, A. Nova, B. Adlam, B. Bohnet, G. Elsayed, H. Sedghi,
I. Mordatch, I. Simpson, I. Gur, J. Snoek, J. Pennington, J. Hron,
K. Kenealy, K. Swersky, K. Mahajan, L. Culp, L. Xiao, M. L. Bileschi,
N. Constant, R. Novak, R. Liu, T. Warkentin, Y. Qian, Y. Bansal,
E. Dyer, B. Neyshabur, J. Sohl-Dickstein, and N. Fiedel.
Beyond human data: Scaling self-training for problem-solving
with language models, 2024.

@ K. Zheng, J. M. Han, and S. Polu.
minif2f: a cross-system benchmark for formal olympiad-level
mathematics.
In International Conference on Learning Representations, 2022.

57



