Bridging Informal & Formal Mathematical Reasoning (with neural language models)

Sean Welleck | University of Washington, Al2

Engineering

Science

Education

AlphaFold

Accelerating scientific discovery

AlphaFold can accurately predict 3D models of protein structures and is accelerating research in nearly every field of biology.

Engineering

Science

Education

AlphaFold

AlphaFold can accurately predict 3D models o protein structures and is accelerati esearch in nearly every field of biol

Engineering

Your Al pair programmer

GitHub Copilot uses the OpenAl Codex to suggest code and entire functions in real-time, right from your editor.

Start my free trial >

ort { fetch } from "fetch-h2";

usr/bin/env ts-node

Science

Education

Explore docs

iments.ts 👓 write_sql.go 🖨 parse_expenses.py 🛃 addresses.rb

AlphaFold

AlphaFold can accurately predict 3D models o protein structures and is accelerati esearch in nearly every field of biol

Engineering

Start my free trial >

Science

Can A.I. Grade Your Next Test?

Neural networks could give online education a boost by providing automated feedback to students.

Education

Explore docs

Mathematics

Discovering novel algorithms with AlphaTensor

October 5, 2022

First extension of AlphaZero to mathematics unlocks new possibilities for research

Mathematics

MACHINE LEARNING

3 | 💻

In New Math Proofs, Artificial Intelligence **Plays to Win**

A new computer program fashioned after artificial intelligence systems like AlphaGo has solved several open problems in combinatorics and graph theory.

Discovering novel algorithms with AlphaTensor

October 5, 2022

First extension of AlphaZero to mathematics unlocks new possibilities for research

Mathematics

MACHINE LEARNING

93 | 💻

In New Math Proofs, Artificial Intelligence **Plays to Win**

A new computer program fashioned after artificial intelligence systems like AlphaGo has solved several open problems in combinatorics and graph theory.

Discovering novel algorithms with AlphaTensor

ctober 5, 2022

First extension of AlphaZero to mathematics unlocks new possibilities for research

Mathematics

Hicrosoft / The Al Blog

Online math tutoring service uses AI to help boost students' skills and confidence

John Roach Jul 13, 2022

(in 오

Mathematics

juage

Symbolic Reasoning

Language VIALINE

Problem Solving

Language

Problem Solving

Language

Symbolic Reasoning

Proof:

1 + 1 = 2

Claim:

Proof:

It's obvious: if you pick up one apple, and then pick up another, you've picked up two apples.

Claim:

Proof:

*54.43. $\vdash :. \alpha, \beta \in 1.$ $\supset : \alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2$ Dem. $\vdash .*54.26. \supset \vdash :. \alpha = \iota'x$ [*51.231][*13.12] F.(1).*11.11.35.⊃ $\vdash :. (\exists x, y) . \alpha = \iota' x$ F.(2).*11.54.*52.1.⊃ From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

1 - 1 = 2

$$\begin{array}{l} \beta = \iota' y \, . \, \Im : \alpha \cup \beta \, \epsilon \, 2 \, . \equiv \, . \, x \neq y \, . \\ \equiv \, . \, \iota' x \cap \iota' y = \Lambda \, . \\ \equiv \, . \, \alpha \cap \beta = \Lambda \end{array}$$

$$\beta = \iota' y \cdot \Im : \alpha \cup \beta \in 2 : \equiv . \alpha \cap \beta = \Lambda$$
 (2)

$$\triangleright F \cdot \operatorname{Prop}$$

Russell 1910, Principia Mathematica

1 + 1 = 2

It's obvious: if you pick up one apple, and then pick up another, you've picked up two apples.

Intuitive Ambiguous

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Precise Explicit

It's obvious: if you pick one apple, and then pic another, you've picked two apples.

Theorem

Let $x \in \mathbb{Z}$ be an even integer.

Then x + 5 is odd.

Proof

Let x be an even integer.

Let y = 2n + 5.

Assume y = x + 5 is not an odd integer.

Then:

$$y = x + 5 = 2n$$

where $n \in \mathbb{Z}$.

Then:

x = 2n - 5

Informal

g the definition successor of 1, ive definition of

S(1) = 2.

*54.43. $\vdash :. \alpha, \beta \in 1.$): $\alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2$ Dem. $\vdash .*54 \cdot 26 . \supset \vdash :. \alpha = \iota' x . \beta = \iota' y . \supset : \alpha \cup \beta \in 2 . \equiv . x \neq y .$ [*51.231] $\equiv \cdot \iota' x \cap \iota' y = \Lambda \ .$ [*13.12] $\equiv \cdot \alpha \land \beta = \Lambda \qquad (1)$ F.(1).∗11·11·35.⊃ $\vdash :. (\exists x, y) \cdot \alpha = \iota^{\epsilon} x \cdot \beta = \iota^{\epsilon} y \cdot \mathsf{D} : \alpha \lor \beta \in 2 \cdot \equiv \cdot \alpha \land \beta = \Lambda$ (2) \vdash . (2) . *11.54 . *52.1 . \supset \vdash . Prop From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Formal

Informal

 $\frac{21n+4}{14n+3}$ is irreducible for every natural number n.

1. D: $\alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2$

Let gcd(21n + 4, 14n + 3) = a. So for some co-prime positive integers x, y we have

$$21n + 4 = ax \qquad (1)$$

$$14n + 3 = ay \qquad (2$$

Multiplying (1) by 2 and (2) by 3 and then subtracting (1) from (2) we get

$$42n + 9 - (42n + 8) = 3ay - 2ax$$

$$\implies a(3y-2x) = 1.$$

We must have a = 1, since a is an positive integer. Thus, gcd(21n + 4, 14n + 3) = 1 which means the

 $\beta \epsilon 2 . \equiv . x \neq y$.

fraction is irreducible, as needed.

Informal

21n + 4 $\frac{1}{14n+3}$ is irreducible for every natural number $n_{\alpha,\beta} \in 1.0: \alpha \circ \beta = \Lambda = \alpha \circ \beta \in 2$ $\vdash \cdot \ast 54 \cdot 26 \cdot \bigcirc \vdash \vdots \alpha = \iota' x \cdot \beta = \iota' y \cdot \bigcirc \vdots \alpha \lor \beta \in 2 \cdot \equiv \cdot x \neq y \cdot$ We provet gad(21n + 4, 44n) + continue should be for some contractions integers x, y we have $\equiv \cdot \iota' x \cap \iota' y = \Lambda \ .$ of 1 as the successor of 0, 2 as the successor of 1, and then invoking twice the recursive definition of ax(1)[*13.12] $\equiv . \alpha \cap \beta = \Lambda$ F.(1). *11·11·35.⊃ 14n + 3 = ay(2) $\vdash :. (\exists x, y) \cdot \alpha = \iota'x \cdot \beta = \iota'y \cdot \supset : \alpha \lor \beta \in 2 \cdot \equiv \cdot \alpha \land \beta = \Lambda$ $\frac{1}{\text{Multiplying}} \left(1 \right) \text{ by } \overline{2} \text{ and } \left(2 \right) \text{ by } 3 = S(1) = 2$ Multiplying $(1) \text{ by } \overline{2} \text{ and } \left(2 \right) \text{ by } 3 = S(1) = 2$ Nultiplying $(1) \text{ from } (2) \text{ we get}^{(2)} \cdot *^{11\cdot54} \cdot *^{52\cdot1} \cdot 2 \vdash \cdot \text{ Prop}$ $42n + 9 - (42n + 8) = 3ay_{\text{fined}} x_{\text{hat } 1+1=2}$. $\implies a(3y-2x)=1.$ We must have a = 1, since a is an positive integer. Thus, gcd(21n + 4, 14n + 3) = 1 which means the

Formal

Hi, how are

Implicit mixture of tasks

Addition is written using the plus sign "+" between the terms;^[3] 1+1=2 ("one plus one equals two")

Addition is written using the plus sign "+" between the terms;^[3] 1+1=2 ("one plus one equals two")

Implicit mixture of tasks

Data rich

Informal

One apple plus one apple

Data rich

One apple plus one apple

Flexible Data rich

Solving Math Word Problems

We've TRAINED a system that solves grade school math problems with nearly twice the accuracy of a fine-tuned GPT-3 model. It solves about 90% as many problems as real kids: a small sample of 9-12 year olds

[problem]

Informal

[problem]

Informal

... each rose has 8 thorns. So $3 \ge 25 \ge 8 = 300$. The answer is 300.

[problem]

Informal

... each rose has 8 thorns. So $3 \ge 25 \ge 8 = 300$. The answer is 300

Large Langua

[problem]

Informal

Direct Proof

Let x be an even integer.

Then by definition:

x = 2n

for some integer *n*.

Let y = 2n + 5.

Then:

- y = 2n + 5

 - = 2r + 1

$= 2n + 2 \times 2 + 1$ = 2(n+2)+1

. each rose has 8 thorns. o 3 x 25 x 8 = 300. The nswer is 300.

[dialogue]

[dialogue]

My favorite Elvis Presley song is "Love Me Do"

[dialogue]

My favorite Elvis Presley song is "Love Me Do" which came out in 1999.

> Released by the Beatles in 1962

[dialogue]

My favorite Elvis Presley song is "Love Me Do" which came out in 1999.

Released by the Beatles in 1962

Proof

If $p \nmid n$ then from Fermat's Little Theorem: $n^{p-1} \equiv 1 \pmod{p}$

If $p \setminus n$ then:

 $p \setminus n^{p-1}$

and $n^{p-1} \equiv 0 \pmod{p}$ by definition.

Hence the result by definition of lverson's convention.

Informal

Large Language Models

Proof

If $p \nmid n$ then from Fermat's Little Theorem: $n^{p-1} \equiv 1 \pmod{p}$

If $p \setminus n$ then:

 $p \setminus n^{p-1}$

and $n^{p-1} \equiv 0 \pmod{p}$ by definition.

Hence the result by definition of lverson's convention.

Data rich Grounding

Informal

Example based on [Shuster et al 2021]

NaturalProver **Document grounding**

Draft, Sketch, Prove Logical grounding

Informal

.

Theorem

The sum of any finite number of even integers is even.

Informal

•••••

Proof

By induction: for all $n \in \mathbb{N}$, let P(n)...

NaturalProofs [Welleck et al 2021]: 20k theorems and proofs from ProofWiki

Proof by Contradiction: Aiming for a contradiction, suppose x + 5 is even.

Proof by Contradiction: Aiming for a contradiction, suppose x + 5 is even. Then there exists $r \in \mathbb{Z}$ such that x + 5 = 2r.

Hallucinated theorem

Informal

Proof by Contradiction: Aiming for a contradiction, suppose x + 5 is even. Then there exists $r \in \mathbb{Z}$ such that x + 5 = 2r. But from Odd Integer Plus Odd Integer is Odd, 2r + 1 is odd.

Hallucinated theorem

Informal

Proof by Contradiction: Aiming for a contradiction, suppose x + 5 is even. Then there exists $r \in \mathbb{Z}$ such that x + 5 = 2r. But from Odd Integer Plus Odd Integer is Odd, 2r + 1 is odd. The result follows by Proof by Contradiction. **theorem Invalid reasoning**

Hallucinated theorem

knowledge + search \implies grounding

Informal

Proof by Contradiction: Aiming for a contradiction, suppose x + 5 is even. Then there exists $r \in \mathbb{Z}$ such that x + 5 = 2r. But from Odd Integer Plus Odd Integer is Odd, 2r+1 is odd. The result follows by Proof by Contradiction. Invalid reasoning

- An integer $n \in \mathbb{Z}$ is odd if and only if:
 - $x \equiv 1 \pmod{2}$

where the notation denotes congruence modulo 2.

NaturalProver : constrained search Theorem Let *x* be an even integer.

Then x + 5 is odd.

Even Integer Odd Integer Integer Proof by Contradiction

NaturalProver : constrained search Theorem Let x be an even integer. Then x + 5 is odd. Constrained [']NaturalProver Search Even Integer Odd Integer Integer Proof by Contradiction

Then there exists an integer k such that x + 5 = 2k.

Then there exists an integer k such that x + 5 = 2k. This contradicts the premise that x is even.

Then there exists an integer k such that x + 5 = 2k. This contradicts the premise that x is even. Hence, by Proof by Contradiction, x + 5 is odd.

Correct and useful?

Human Evaluation

Proof

Derivative of Even Function is Odd

Let f be a differentiable real function such that f is even.

Then its derivative f' is an odd function.

Human-machine collaboration

Human-machine collaboration

Derivative of Even Function is Odd

Let f be a differentiable real function such that f is even.

Then its derivative f' is an odd function.

$$f(x) = f(-x) \quad \text{Defin}$$

$$\Rightarrow \frac{d}{dx}f(x) = \frac{d}{dx}f(-x)$$

$$\Rightarrow f'(x) = -f'(-x)$$

Hence the result by definition of odd function.

inition of Even Function

differentiating both sides with respect to x

Chain Rule for Derivatives

Informal

Reasoning Errors (\downarrow)

Informal

Reasoning Errors (\downarrow)

Informal

Reasoning Errors (\downarrow)

Proof: 0 < 1 $\rightarrow -1 < 0$

Real Zero is Less than Real One

Informal

Order of Real Numbers is Dual of Order of their Negatives

Real Zero is Less than Real One Order of Real Numbers is Dual of Order of their Negatives

Informal

ess than Real One

Minerva 540 billion params

Minerva 540 billion params

Informal

Find the greatest common divisor of 3339, 2961, 1491.

Find the greatest common divisor of 3339, 2961, and 1491.

The prime factorizations of 3339, 2961, and 1491 are

 $3339 = 3 \cdot 7 \cdot 13 \cdot 19$ $2961 = 3 \cdot 7 \cdot 11 \cdot 17$, $1491 = 3 \cdot 7 \cdot 19 \cdot 7.$

The greatest common divisor of 3339, 2961, and 1491 is the product of the common prime factors, which is $3 \cdot 7 = 21$. Final Answer: The final

Minerva 540 billion params

Informal

Find the greatest common divisor of 3339, 2961, 1491.

Find the greatest common divisor of 3339, 2961, and 1491.

The prime factorizations of 3339, 2961, and 1491 are

 $3339 = 3 \cdot 7 \cdot 13 \cdot 19$ $2961 = 3 \cdot 7 \cdot 11 \cdot 17$, $1491 = 3 \cdot 7 \cdot 19 \cdot 7.$

The greatest common divisor of 3339, 2961, and 1491 is the product of the common prime factors, which is $3 \cdot 7 = 21$. Final Answer: The final

Final answer: 21. **Correct** answer

Minerva 540 billion params

Informal

Find the greatest common divisor of 3339, 2961, 1491.

Find the greatest common divisor of 3339, 2961, and 1491.

The prime factorizations of 3339, 2961, and 1491 are

 $2961 = 3 \cdot 7 \cdot 11 \cdot 17$ $1491 = 3 \cdot 7 \cdot 19 \cdot 7.$

The greatest common divisor of 3339, 2961, and 1491 is the product of the common prime factors, which is $3 \cdot 7 = 21$. Final Answer: The final

3339 = 3 * 7 * 13 * 19

Invalid reasoning

Final answer: 21. **Correct** answer

NaturalProver **Document grounding**

Draft, Sketch, Prove Logical grounding

Informal

.

Draft, Sketch, Prove

.....

Draft, Sketch, Prove

Grounding

x+y = y+x

Formal

Grounding

Sledgehammer [Paulson 2010] - calls out to external provers


```
theorem algebra_absxm1pabsxpabsxp1eqxp2_0leqxleq1:
 fixes x :: real assumes "abs (x - 1) + abs x + abs (x + 1) = x + 2"
 shows "0 < le x < and x < le 1"
proof -
 have c0: "x \<le> -1 \<Longrightarrow> False"
 proof -
     ssume c1: "x \<le> -1"
   have c2: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x - (x+1)" using c1
      <ATP> by auto </ATP>
   then have c3: "abs(x-1) + abs x + abs(x+1) = -3 \times x" <ATP> by auto </ATP>
   then have c4: "-3*x = x+2" using assms c3 \langle ATP \rangle by auto \langle ATP \rangle
   then have c5: "x = -1/2" <ATP> by auto </ATP>
   then show ?thesis using c1 <ATP> by auto </ATP>
 qed
 have c6: "-1 < x \<Longrightarrow> x < 0 \<Longrightarrow> False"
 proof -
     assume c7: "-1 < x" assume c8: "x < 0"
   have c9: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x + (x+1)" using c7 c8
      <ATP> by auto </ATP>
                                  x \cdot abs(x+1) = 2-x All ATP > by auto </ATP > 0
                                        abs(x+1) = 2-x" \langle ATP \rangle by auto \langle ATP \rangle
   then have c10: "abs(x-1) + abs
   then have c11: "2-x = x+2" using
                                  then have c12: "x = 0" <ATP
   then show ?thesis using c8 <
                                           to </ATP>
 qed
 have c13: "x > 1 \<Longrightarrow> False"
 proof -
        me c14: "x > 1"
   have c15: "abs(x-1) + abs x + abs(x+1) = x-1 + x + (x+1)" using c14
      <ATP> by auto </ATP>
   then have cl6: "abs(x-1) + abs x + abs(x+1) = 3 \times x" <ATP> by auto </ATP>
    then have c17: "3 \times x = x + 2" using assms c16 <ATP> by auto </ATP>
   then have c18: "x = 1" <ATP> by auto </ATP>
   then show ?thesis using c14 <ATP> by auto </ATP>
 qed
 then show ?thesis using c0 c6 c13 <ATP> by fastforce </ATP>
qed
```

Formal

Real theorem

Vast search space!!

```
theorem algebra_absxm1pabsxpabsxp1eqxp2_0leqxleq1:
 fixes x :: real assumes "abs (x - 1) + abs x + abs (x + 1) = x + 2"
 shows "0 < le x < and x < le 1"
 have c0: "x \<le> −1 \<Longrightarrow> False"
 proof -
        me c1: "x \<le> -1"
   have c2: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x - (x+1)" using c1
      <ATP> by auto </ATP>
    then have c3: "abs(x-1) + abs x + abs(x+1) = -3 \times x" <ATP> by auto </ATP>
    then have c4: "-3*x = x+2" using assms c3 \langle ATP \rangle by auto \langle ATP \rangle
   then have c5: "x = -1/2" <ATP> by auto </ATP>
   then show ?thesis using c1 <ATP> by auto </ATP>
 have c6: "-1 < x \<Longrightarrow> x < 0 \<Longrightarrow> False"
 proof -
       x = c7: -1 < x'' assume c8: x < 0''
   have c9: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x + (x+1)" using c7 c8
      <ATP> by auto </ATP>
                                   x abs(x+1) = 2-x ATP > by auto </ATP >
                                         lbs(x+1) = 2-x'' \langle ATP \rangle by auto \langle ATP \rangle
    then have c10: "abs(x-1) + abs
    then have c11: "2-x = x+2" using
    then have cl2: "x = 0" <ATP
   then show ?thesis using c8 <
                                            to \langle ATP \rangle
 have c13: "x > 1 \<Longrightarrow> False"
 proof -
         me c14: "x > 1"
   have c15: "abs(x-1) + abs x + abs(x+1) = x-1 + x + (x+1)" using c14
      <ATP> by auto </ATP>
   then have cl6: "abs(x-1) + abs x + abs(x+1) = 3 \times x" <ATP> by auto </ATP>
    then have c17: "3 \times x = x + 2" using assms c16 <ATP> by auto </ATP>
   then have c18: "x = 1" <ATP> by auto </ATP>
   then show ?thesis using c14 <ATP> by auto </ATP>
 qed
 then show ?thesis using c0 c6 c13 <ATP> by fastforce </ATP>
```


Real theorem


```
theorem algebra_absxm1pabsxpabsxp1eqxp2_0leqxleq1:
 fixes x :: real assumes "abs (x - 1) + abs x + abs (x + 1) = x + 2"
 shows "0 < le x < and x < le 1"
proof -
 have c0: "x \<le> -1 \<Longrightarrow> False"
 proof -
     assume c1: "x \<le> -1"
   have c2: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x - (x+1)" using c1
      <ATP> by auto </ATP>
    then have c3: "abs(x-1) + abs x + abs(x+1) = -3 \times x" <ATP> by auto </ATP>
    then have c4: "-3*x = x+2" using assms c3 \langle ATP \rangle by auto \langle ATP \rangle
   then have c5: "x = -1/2" <ATP> by auto </ATP>
   then show ?thesis using c1 <ATP> by auto </ATP>
 have c6: "-1 < x \<Longrightarrow> x < 0 \<Longrightarrow> False"
 proof -
     assume c7: "-1 < x" assume c8: "x < 0"
   have c9: "abs(x-1) + abs x + abs(x+1) = -(x-1) - x + (x+1)" using c7 c8
      <ATP> by auto </ATP>
                                        abs(x+1) = 2-x" \langle ATP \rangle by auto \langle ATP \rangle
    then have c10: "abs(x-1) + abs
                                   • ms c10 < ATP > by auto </ATP >
    then have c11: "2-x = x+2" using
                                  then have c12: "x = 0" <ATP
   then show ?thesis using c8 <
                                           to </ATP>
 have c13: "x > 1 \<Longrightarrow> False"
 proof -
        me c14: "x > 1"
   have c15: "abs(x-1) + abs x + abs(x+1) = x-1 + x + (x+1)" using c14
      <ATP> by auto </ATP>
   then have cl6: "abs(x-1) + abs x + abs(x+1) = 3 \times x" <ATP> by auto </ATP>
    then have c17: "3 \times x = x + 2" using assms c16 <ATP> by auto </ATP>
   then have c18: "x = 1" <ATP> by auto </ATP>
   then show ?thesis using c14 <ATP> by auto </ATP>
 qed
 then show ?thesis using c0 c6 c13 <ATP> by fastforce </ATP>
```

Formal

Real theorem

Real theorem

lf gcd(n, 40) = 10 and lcm(n,4) = 280,prove that *n* is 70.

We know that $gcd(a, b) \cdot lcm(a, b) = ab$, hence $10 \cdot 280 = n \cdot 40$.

Then $n = 10 \cdot 280/40 = 70$,

completing the proof.

completing the proof.

Informal

Formal Proof Sketch

completing the proof.

Natural Proof Draft

We know that $gcd(a, b) \cdot lcm(a, b) = ab$, hence $10 \cdot 280 = n \cdot 40$.

Then $n = 10 \cdot 280/40 = 70$,

completing the proof.

Informal

Formal

Natural Proof Draft

We know that $gcd(a, b) \cdot lcm(a, b) = ab$, hence $10 \cdot 280 = n \cdot 40$.

Then $n = 10 \cdot 280/40 = 70$,

completing the proof.

Informal

Decomposes search

Natural Proof Draft

We know that $gcd(a, b) \cdot lcm(a, b) = ab$, hence $10 \cdot 280 = n \cdot 40$.

Then $n = 10 \cdot 280/40 = 70$,

completing the proof.

Informal

Decomposes search

Verified Formal Proof

by (smt (z3) prod_gcd_lcm_nat) then have c2: "n = 10*280/40"by auto

using assms

by auto

have c1: " $10 \times 280 = n \times 40$ "

Verified Formal Proof

Paired data doesn't exist! Formal Proof Sketch Natural Proof Draft ???

Can learn tasks in-context

Informal

Can learn tasks in-context

Informal

Informal Statement: Show that for any Theorem Draft formal Statement: Show that for any real number a, $10a \le 28a^2 + 1$. Informal Proof: It suffices to show $0 \le 28a^2 - 10a + 1$. First, consider completing the square for $28a^2 - 10a + 1$. To an even to a more than the spin of the $\begin{array}{l} \text{an algebra}, \\ \text{ass a :: real} \\ \text{over "10 * a } \leq 28 * a^2 + 1" \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^2 - 10a + 1 *) \\ \text{ver } - (* \text{ it suffices to show 0 } <= 28a^$ $bt - (* \text{ it suffices to show } 0 \le 28a^2 - 10a + 1 *)$ $we c0: "0 \le 28a^2 - 10a + 1"$ $rcoof - (* observe that (a - (5/28))^2 = a^2 - (10/28)a + (5/28)^2 *)$ $have c1: "(a - (5/28))^2 = a^2 - 10/28a + (5/28)^2 * (28a^2)^2 + (5/28$ ave c1: "(a - (5/28))"2 = a"2 - 10/28a + (5/ * we get 0 <= a^2 - (10/28)a + (5/28)^2 *) $\begin{array}{l} < a \ 2 - (10/28) a + (5/28) \ 2 *) \\ in g \ by \ 28 \ and \ simplifying \ gives \ 0 \ < 28a^2 - 10a + (25/28) \ *) \\ \leq 28a^2 - 10a + 28(5/28) \ 2)^n \ using \ c \ < \cdots > \\ \leq 28a^2 - 10a + 28(5/28) \ (5/28)^n \ using \ c \ < \cdots > \\ \leq 28a^2 - 10a + 28(5/28)^n \ (5/28)^n \ using \ c \ < \cdots > \\ \leq 28a^2 - 10a + (25/28)^n \ using \ c \ < \cdots > \\ \leq 28a^2 - 10a + (25/28)^n \ using \ c \ < \cdots > \\ \ /28 \ < 1, \ the \ result \ follows. \ *) \end{array}$ **Sketch** 10a and $5/28)^2$ e result have c2: " $0 \le a^2 - 10/28a + (5/28) ^2$ " using c1 <...> (* Multiplying by 28 and simplifying gives $0 \ll 28a^2 - 10a + (25/28) *$) have c3: " $0 \le 28a^2 - 10a + 28 (5/28) ^2$ " using c2 <...> have c4: " $0 \le 28a^2 - 10a + 28 (5/28) * (5/28) *$ " using c3 <...> have c5: " $0 \le 28a^2 - 10a + 28 (5/28) * (5/28) *$ " using c3 <...> (* Since 25/28 < 1, the result follows. *) (* Multiplying by 28 and simplifying gives 0 <= 28a^2 - 10a + (25/28) *) have c3: " $0 \le 28a^2 - 10a + 28((5/28)^2)$ " using c2 < ... > have c4: " $0 \le 28a^2 - 10a + 28((5/28)^2)$ " using c3 < ... > have c5: " $0 \le 28a^2 - 10a + 28((5/28) \cdot (5/28))$ " using c3 < ... > (* Since 25/28 < 1, the result follows. *) abov Thesis using c5 < ... >

Can learn to sketch in-context!!!

Formal Proof Sketch

Can learn to sketch in-context!!!

formal Statement: Show that for any real number a, $10a \le 28a^2 + 1$. Informal Proof: It suffices to show $0 \le 28a^2 - 10a + 1$. First, consider completing the square for $28a^2 - 10a + 1$. The second solution $\sqrt{2} \cos^2 - \cos^2 - 1\cos^2 + 1$, rust, consister completing the square for $2\delta a^2 - 10a$ and $\sqrt{2}$ observe that $(a - \frac{2}{3})^2 = a^2 - \frac{2}{3}a^2 + (5/2a^2)$. Since $0 \le (a - \frac{2}{3})^2$, we get $0 \le a^2 - \frac{2}{3}a^2 + (5/2a^2)$. Multiplying by 28 and simplifying gives $0 \le 28a^2 - 10a + (25/28)$. Since 25/28 < 1, there sult follows.

ave c1: "(a - (5/28))"2 = a"2 - 10/28a + (5/28)"2" * we get 0 <= a^2 - (10/28)a + (5/28)^2 *)

 $\label{eq:constraint} \begin{array}{l} \text{cheorem algebra binommegdiscrineq_loalt28asqpl:} \\ \text{fixes a :: real} \\ \text{shows "10 * a $ 28 * a^2 + 1" \\ \text{roof - (* it suffices to show $ (28a^2 - 10a + 1 *)$ \\ \text{have } c1: "o $ 28a^2 - 10a + 1" \\ \text{proof - (* observe that (a - (528))"2 = a^2 2 - (10/28)a + (5/28)"2 *)$ \\ \text{have } c1: "a - (5/28)"2 = a^2 - 10/28a + (5/28)"2 * < \cdots > \end{array}$

 $\begin{array}{l} 0 \leftarrow a \ 2 \ - \ (10/28) a \ + \ (5/28)^{-2} \ast h \\ (5/28)^{-2} \ w \sin q \ c \ - \ > \\ y \sin q \ b \ 28 \ and \ simplifying \ qives \ 0 \leftarrow 28a^2 \ - \ 10a \ + \ (25/28) \ast) \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ 28(5/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ 28(5/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \sin q \ c \ < \ \sim \ > \\ 0 \ \leq 28a^2 \ - \ 10a \ + \ (25/28)^{-2} \ w \ < \ < \ > \\ 0 \ < \ > \ > \\ 0 \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \ > \ \ > \ < \ > \ < \ > \ < \ > \ < \ > \ < \$

have c2: " $0 \le a^2 - 10/28a + (5/28) ^2$ " using c1 <...> (* Multiplying by 28 and simplifying gives $0 \ll 28a^2 - 10a + (25/28) *$) have c3: " $0 \le 28a^2 - 10a + 28 (5/28) ^2$ " using c2 <...> have c4: " $0 \le 28a^2 - 10a + 28 (5/28) * (5/28) *$ " using c3 <...> have c5: " $0 \le 28a^2 - 10a + 28 (5/28) * (5/28) *$ " using c3 <...> (* Since 25/28 < 1, the result follows. *)

(* Multiplying by 28 and simplifying gives 0 <= $28a^2 - 10a + (25/28) *$)

 $\begin{array}{l} have c3: "0 \leq 28a^{-}2 - 10a + 28((5/28)^{-}2)" using c2 < \cdots > \\ have c4: "0 \leq 28a^{-}2 - 10a + 28((5/28)^{-}5/28))" using c3 < \cdots \\ have c5: "0 \leq 28a^{-}2 - 10a + (25/28)" using c4 < \cdots > \\ (* Since 25/28 < 1, the result follows. *) \\ abov Thesis using c5 < \cdots > \end{array}$

 $(0a \text{ and } 5/28)^2$. e result

Formal Proof Sketch

Informal Proof: follows. rmal Statement: Show that for any real number a, $10a \le 28a^2 + 1$. **Informal Proof:** t suffices to show $0 \le 28a^2$ 10a + 1. First, consider completing the square for 28 To an even of a more than $(a - \frac{5}{26})^2 = a^2 - \frac{10}{20}a + (5/28)^2$. Since $0 \le (a - \frac{5}{26})^2$, $get 0 \le a^2 - \frac{10}{20}a + (5/28)^2$. Multiplying by 28 and simplifying gives $0 \le 28a^2 - 10a + (25/28)$. Since 25/28 < 1, there sult follows. Formal Proof Sketc "10 * $a \le 28 * a^2 + 1$ " (* it suffices to show 0 <= $28a^2 - 10a + 1 *$) $f = (* \text{ observe that } (a - (5/28))^2 = a^2 - (10/28)a + (5/28)^2 *)$ we get $0 \le a^2 - (10/28)a + (5/28)^2 \le a^2 - 10/28a + (5/28)^2 \le a^2 - (10/28)a + (5/28)^2 \le a^2 - (10/28)^2 - (10/2$ 10/28]a + (x/zo) < -, 0/28a + (5/20) ²" using c1 <···> and simplifying gives 0 <= 28a² - 10a + (25/28) *) - 10a + 28((5/28) *(5/28)) " using c2 <···> - 10a + 28((5/28) *(5/28)) " using c3 <···> have c2: "0 $\leq a^2 - 10/28a + (5/28)$ "2" using c1 $< \cdots >$ (* Multiplying by 28 and simplifying gives 0 $\leq 28a^2 - 10a + (25/28) *$) have c3: "0 $\leq 28a^2 - 10a + 28((5/28))$ " using c2 $< \cdots >$ have c4: "0 $\leq 28a^2 - 10a + 28((5/28))$ " using c3 $< \cdots >$ ^2 - 10a + (25/28)" using c4 , the result follows. *) * Multiplying by 28 and simplifying gives 0 <= 28a² - 10a + (25/28) *) have c3: " $0 \le 28a^2 - 10a + 28((5/28)^2)$ " using c2 < ... > have c4: " $0 \le 28a^2 - 10a + 28((5/28) + (5/28))$ " using c3 < ... > (* Since 25/28 - (10a + (25/28) ''' using c3 < ... > (* Since 25/28 < 1, the result follows. *)

Can learn to sketch in-context!!!

Informal Statement: Show that for any real number a, $10a \le 28a^2 + 1$.

It suffices to show $0 \le 28a^2 - 10a + 1$. First, consider completing the square for $28a^2 - 10a$ and observe that $\left(a - \frac{5}{28}\right)^2 = a^2 - \frac{10}{28}a + (5/28)^2$. Since $0 \le \left(a - \frac{5}{28}\right)^2$, we get $0 \le a^2 - \frac{10}{28}a + (5/28)^2$. Multiplying by 28 and simplifying gives $0 \le 28a^2 - 10a + (25/28)$. Since 25/28 < 1, the result

Sketch

follows.

Formal Proof Sketch:

```
Informal Statement: Show that for any real number a, 10a \le 28a^2 + 1.
Informal Proof:
It suffices to show 0 \le 28a^2 - 10a + 1. First, consider completing the square for 28a^2 - 10a and
observe that \left(a - \frac{5}{28}\right)^2 = a^2 - \frac{10}{28}a + (5/28)^2. Since 0 \le \left(a - \frac{5}{28}\right)^2, we get 0 \le a^2 - \frac{10}{28}a + (5/28)^2.
Multiplying by 28 and simplying gives 0 \le 28a^2 - 10a + (25/28). Since 25/28 < 1, the result
theorem algebra_binomnegdiscrineq 10alt28asqp1:
  fixes a :: real
  shows "10 \star a \leq 28 \star a<sup>2</sup> + 1"
proof - (* it suffices to show 0 \le 28a^2 - 10a + 1 *)
  have c0: "0 \le 28a^2 - 10a + 1"
  proof - (* observe that (a - (5/28))^2 = a^2 - (10/28)a + (5/28)^2 *)
    have c1: "(a - (5/28))<sup>2</sup> = a<sup>2</sup> - 10/28a + (5/28)^{2}" < ··· >
    (* we get 0 \le a^2 - (10/28)a + (5/28)^2 *)
    have c2: "0 \le a^2 - 10/28a + (5/28)^2" using c1 < · · · >
     (* Multiplying by 28 and simplifying gives 0 \le 28a^2 - 10a + (25/28) *)
    have c3: "0 \le 28a^2 - 10a + 28((5/28)^2)" using c2 < · · · >
    have c4: "0 \le 28a^2 - 10a + 28((5/28) * (5/28))" using c3 < · · · >
    have c5: "0 \le 28a^2 - 10a + (25/28)" using c4 < · · · >
     (* Since 25/28 < 1, the result follows. *)
    show ?thesis using c5 < ··· >
  qed
  show ?thesis < \cdots >
qed
```

Can learn to sketch in-context!!!

Can learn to sketch in-context!!!

Can learn to sketch in-context!!!

Can learn to sketch in-context!!!

Informal

Generate & verify

Informal

Formal

Generate & verify

Informal

Flexibility Data

Flexibility Data

Grounding

Flexibility Data

Informal

Best of both worlds!

Grounding

• miniF2F benchmark: 488 problems from competitions and undergrad courses

• miniF2F benchmark: 488 problems from competitions and undergrad courses

• Isabelle proof assistant

• Sledgehammer + heuristics • miniF2F benchmark: 488 problems from competitions and undergrad courses

Isabelle proof assistant •

• Sledgehammer + heuristics • miniF2F benchmark: 488 problems from competitions and undergrad courses

Isabelle proof assistant •

State-of-the-art neural theorem prover

THOR with Expert Iteration [Wu et al 2022]

Achieves state-of-the art on miniF2F

Proving without sketching isn't enough

versus

(Validation set)

Proving without sketching isn't enough

versus

(Validation set)

versus

More drafts > more sketches

versus

More drafts > more sketches

versus

More drafts > more sketches

International Math Olympiad 1959 P.1

Statement: Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number *n*.

International Math Olympiad 1959 P.1

Neural Draft (Minerva)

Statement: Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number *n*.

Informal Proof (Minerva 62B): We must show that gcd(21n + 4, 14n + 3) = 1. The Euclidean algorithm gives

Since gcd(7n + 1, 1) = 1, we have gcd(21n + 4, 14n + 3) = 1.

 $21n + 4 = 1 \cdot (14n + 3) + 7n + 1$ $14n + 3 = 2 \cdot (7n + 1) + 1.$

International Math Olympiad 1959 P.1

Neural Draft (Minerva)

Statement: Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number *n*.

Informal Proof (Minerva 62B): We must show that gcd(21n + 4, 14n + 3) = 1. The Euclidean algorithm gives

Since gcd(7n + 1, 1) = 1, we have gcd(21n + 4, 14n + 3) = 1.

Formal Proof:

theorem imo_1959_p1: fixes n :: nat **shows** "gcd (21*n + 4) (14*n + 3) = 1" proof -

 $21n + 4 = 1 \cdot (14n + 3) + 7n + 1$ $14n + 3 = 2 \cdot (7n + 1) + 1.$

Formal statement (given)

lympiad	Statement: Prove that the fraction $\frac{216}{146}$
	Informal Proof (Minerva 62B): We must show that $gcd(21n + 4, 14n)$ The Euclidean algorithm gives 21n + 14n
	Since $gcd(7n + 1, 1) = 1$, we have g
	Formal Proof:
	<pre>theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n - proof -</pre>
	<pre>(* The Euclidean algorithm gf 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP]</pre>
	have c1: "14*n + 3 = 2*(7*n - by auto [<i>ATP</i>]

ives (+ 3) + 7*n + 1"

+ 1) + 1" using c(

```
have (21n+4, 14n+3)=1. *)
```

4*n + 3) = 1'

ab_semigroup_add_class.add_ac(1) cd_add2 gcd_add_mult mult_numeral_1 numerals(1) semiring_norm(3)) [ATP]

International Math Ol 1959 P.1	ympiad	Statement: Prove that the fraction $\frac{21}{14}$
Neural Draft (Minerva)		Informal Proof (Minerva 62B): We must show that $gcd(21n + 4, 14n)$ The Euclidean algorithm gives 21n + 14n
		<pre>Since gcd(7n + 1, 1) = 1, we have g Formal Proof: theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n + proof -</pre>
Neural Sketch (Codex)		<pre>(* The Euclidean algorithm g: 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP]</pre>

$$a+3)=1.$$

 $4 + 4 = 1 \cdot (14n + 3) + 7n + 1$ $4 + 3 = 2 \cdot (7n + 1) + 1.$ $4 + 3 = 2 \cdot (7n + 1) + 1.$

+ 3) = 1"

+ 1) + 1" using c(

```
have (21n+4, 14n+3) = 1. *)
```

4*n + 3) = 1'

ab_semigroup_add_class.add_ac(1) cd_add2 gcd_add_mult mult_numeral_1 numerals(1) semiring_norm(3)) [ATP]

nternational Math O 1959 P.1 Neural Draft (Minerva)	lympiad	Since $gcd(7n + 1, 1) = 1$ we have $gcd(21n + 4, 14n)$
		Formal Proof: theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n + proof -
Neural Sketch (Codex)		<pre>(* The Euclidean algorithm gi 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP] have c1: "14*n + 3 = 2*(7*n 4)</pre>
Formal Prover Sledgehammer		<pre>by auto [ATP] (* Since \gcd(7n+1,1)=1, we k then have "gcd (7*n + 1) 1 = using c1 by auto [ATP] then have "gcd (21*n + 4) (14 using c1 by (smt (z3) BitM_plus_one add.assoc c0 gcd.commute gc numeral_One numeral_eq_Suc then show ?thesis using c1 by blast [ATP] qed</pre>

+ 1) + 1**" using** c(

```
have (21n+4, 14n+3) = 1. *)
```

4*n + 3) = 1'

ab_semigroup_add_class.add_ac(1) cd_add2 gcd_add_mult mult_numeral_1 numerals(1) semiring_norm(3)) [ATP]

International Math Ol 1959 P.1 Neural Draft (Minerva)	ympiad	Statement: Prove that the fraction $\frac{21}{14}$ Informal Proof (Minerva 62B): We must show that $gcd(21n + 4, 14n)$ The Euclidean algorithm gives 21n 14n Since $gcd(7n + 1, 1) = 1$, we have g
		<pre>Formal Proof: theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n proof -</pre>
Neural Sketch (Codex)		<pre>(* The Euclidean algorithm g 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP] have c1: "14*n + 3 = 2*(7*n by auto [ATP]</pre>
Formal Prover (Sledgehammer)		<pre>(* Since \gcd(7n+1,1)=1, we is then have "gcd (7*n + 1) 1 = using c1 by auto [ATP] then have "gcd (21*n + 4) (1 using c1 by (smt (z3) BitM_plus_one add.assoc c0 gcd.commute g</pre>
		numeral_One numeral_eq_Suc then show ?thesis using c1 by blast [ATP] qed

$$(x + 3) = 1.$$

$$+4 = 1 \cdot (14n + 3) + 7n + 1$$

+ 3 = 2 \cdot (7n + 1) + 1.
$$\operatorname{cd}(21n + 4, 14n + 3) = 1.$$

gives
*n + 3) + 7*n + 1"
n + 1) + 1" using c0
e have \gcd(21n+4,14n+3)=1. *)
= 1"
(14*n + 3) = 1"

ne ab_semigroup_add_class.add_ac(1) gcd_add2 gcd_add_mult mult_numeral_1 uc numerals(1) semiring_norm(3)) [ATP]

International Math Ol 1959 P.1 Neural Draft (Minerva)	Ympiad	Statement: Prove that the fraction $\frac{21}{14}$ Informal Proof (Minerva 62B): We must show that $gcd(21n + 4, 14n)$ The Euclidean algorithm gives 21n + 14n Since $gcd(7n + 1, 1) = 1$, we have generative formal Proof:
		<pre>theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n - proof -</pre>
Neural Sketch (Codex)		<pre>(* The Euclidean algorithm g: 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP] have c1: "14*n + 3 = 2*(7*n + by auto [ATP]</pre>
Formal Prover (Sledgehammer)		<pre>by auto [AIF] (* Since \gcd(7n+1,1)=1, we l then have "gcd (7*n + 1) 1 = using c1 by auto [ATP] then have "gcd (21*n + 4) (14 using c1 by (smt (z3) BitM_plus_one add.assoc c0 gcd.commute ge numeral_One numeral_eq_Suc then show ?thesis using c1 by blast [ATP] ged</pre>

$$(x + 3) = 1.$$

$$+4 = 1 \cdot (14n+3) + 7n + 1$$

+ 3 = 2 \cdot (7n+1) + 1.
$$\operatorname{cd}(21n+4, 14n+3) = 1.$$

rives + 3) + 7*n + 1" + 1) + 1" **using** c0

have \gcd(21n+4, 14n+3)=1. *)
1"

4*n + 3) = 1"

e ab_semigroup_add_class.add_ac(1) cd_add2 gcd_add_mult mult_numeral_1 e numerals(1) semiring_norm(3)) [ATP]

nternational Math O 1959 P.1	lympiad	Statement: Prove that the fraction $\frac{21n}{14n}$
Neural Draft (Minerva)		Informal Proof (Minerva 62B): We must show that $gcd(21n + 4, 14n)$ The Euclidean algorithm gives 21n - 14n - 14n
		<pre>Since gcd(7n + 1, 1) = 1, we have go Formal Proof: theorem imo_1959_p1: fixes n :: nat shows "gcd (21*n + 4) (14*n + proof -</pre>
Neural Sketch (Codex)		<pre>(* The Euclidean algorithm gi 21n+4=1\cdot(14n+3)+7n+1 14n+3=2\cdot(7n+1)+1. *) have c0: "21*n + 4 = 1*(14*n by auto [ATP] have c1: "14*n + 3 = 2*(7*n + by auto [ATP]</pre>
Formal Prover Sledgehammer		<pre>(* Since \gcd(7n+1,1)=1, we h then have "gcd (7*n + 1) 1 = using c1 by auto [ATP] then have "gcd (21*n + 4) (14 using c1 by (smt (z3) BitM_plus_one add.assoc c0 gcd.commute gc numeral_One numeral_eq_Suc then show ?thesis using c1 by blast [ATP] qed</pre>

$$(x + 3) = 1.$$

$$+4 = 1 \cdot (14n + 3) + 7n + 1$$

+ 3 = 2 \cdot (7n + 1) + 1.
$$\operatorname{cd}(21n + 4, 14n + 3) = 1.$$

pives
(1 + 3) + 7*n + 1"
+ 1) + 1" using c0
have \gcd(21n+4,14n+3)=1. *)
= 1"
.4*n + 3) = 1"

e ab_semigroup_add_class.add_ac(1) cd_add2 gcd_add_mult mult_numeral_1 e numerals(1) semiring_norm(3)) [ATP]

mathematical theorems

Informal

Summary - Language models are capable of proving some sophisticated

- Language models are capable of proving some sophisticated mathematical theorems - Key tradeoff: flexible vs. trustworthy

Informal

Summary

Summary

- Language models are capable of proving some sophisticated mathematical theorems - Key tradeoff: flexible vs. trustworthy - Sketching helps bridge the gap between informal and formal

- Language models are capable of proving some sophisticated mathematical theorems - Key tradeoff: flexible vs. trustworthy - Sketching helps bridge the gap between informal and formal - Language models serve as "high-level reasoners"

Informal

Summary

Generality

Competition Problems

Informal

Background knowledge

Interaction and Feedback

Human feedback

Informal

Machine feedback

Interaction and Feedback

Human feedback

Interaction and Feedback

Human feedback

Informal

Modularity

NaturalProver: Grounded Mathematical Proof Generation with Language Models S. Welleck*, J. Liu*, X. Lu, H. Hajishirzi, Y. Choi NeurIPS 2022.

Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs A. Jiang*, S. Welleck*, J. Zhou*, T. Lacroix, J. Liu, W. Li, M. Jamnik, Y. Wu, G. Lample In submission, ICLR 2023

