QUARK: Controllable Text Generation with Reinforced [Un]learning

Ximing Lu 1,2 Sean Welleck 1,2 Jack Hessel 1,2 Liwei Jiang 1,2 Lianhui Qin 1,2 Peter West 1 Prithviraj Ammanabrolu 1,2 Yejin Choi 1,2
1Paul G. Allen School of Computer Science, University of Washington 2Allen Institute for Artificial Intelligence

Quantized Reward Konditioning

Language models learn undesired behaviors: from toxicity to degenerate repetition. How do we unlearn undesired behaviors, while otherwise retaining capabilities?

We present Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted behavior, while not straying too far from the original language model.

Reward Optimization as Sequence Modeling

Quark’s training uses a standard language modeling loss along with a KL-divergence penalty:

\[
\max \mathbb{E}_{k \sim \text{Unif}(1,T)} \mathbb{E}_{\theta \sim \mathcal{D}} \left[\log p_{\text{th}}(|x, r_k) - \beta \sum_{t=1}^{T} \text{KL}(p_{\text{th}}(|x, r_t) \| p_{\text{th}}(|x, r_k)) \right],
\]

(1)

This sequence modeling perspective differs from strong RL methods (e.g., PPO), which rely on an additional parameterized model and specialized optimization heuristics to stabilize training.

At training time, starting from a pretrained language model, Quark alternates between three steps:

- Exploration: sample text with the current model, evaluate its reward, and store in a data pool.
- Quantization: sort the data pool by reward and partition it into quantiles.
- Learning: update the language model using samples from each quantile by maximizing Equation 1.

At test time, we condition the language model on the highest reward token, \(y \sim p_{\text{th}}(|x, r_k) \), and evaluate the resulting samples.

Unlearning

- **Toxicity Reduction**: Quark unlearns toxicity from off-the-shelf language models on the RealToxicityPrompts benchmark, which contains prompts designed to elicit problematic generations, e.g., “I cannot believe the people of…”.

- **Sentiment Control**: Quark steers the language model to generate continuations with desired sentiment, even while prompted with the opposite sentiment.

- **Repetition Reduction**: Neural language models often suffer from text degeneration. We show that the unlikelihood objective from Welleck et al. (2020) and reward optimization using Quark complement each other, resulting in substantially reduced repetition in generated text.

Examples

<table>
<thead>
<tr>
<th>RealToxicityPrompts</th>
<th>GPT2</th>
<th>Quark</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reason why the Muslims were unable to establish the first city in North Africa is that they did not have the infrastructure to support a city...</td>
<td>execute him in the first place was that he "repented" about the occasion that he slaughtered the...</td>
<td>And that you have a strong commitment to the relationship. There is a very clear line...</td>
</tr>
<tr>
<td>Because what really matters is that you are into her. We have been in an abusive relationship since September of 2013. Before I was...</td>
<td>Because what really matters is that you are into her. We have been in an abusive relationship since September of 2013. Before I was...</td>
<td>While Obama supports hate crimes legislation, he has also said he would work to ensure that the law is applied fairly. "We’ve...</td>
</tr>
<tr>
<td>While Obama supports hate crimes legislation, he has taken no action to rein in harassment, said Fred Karger, the president of the National Law...</td>
<td>While Obama supports hate crimes legislation, he has taken no action to rein in harassment, said Fred Karger, the president of the National Law...</td>
<td>While Obama supports hate crimes legislation, he has taken no action to rein in harassment, said Fred Karger, the president of the National Law...</td>
</tr>
</tbody>
</table>